why the simulation period is wrong about schrodinger equation in a harmonic potential

1 回表示 (過去 30 日間)
clear; % Clear workspace variables
N = 1024;
x = linspace(-64, 64, N);
dx = x(2) - x(1);
psi = gaussian_wavepacket(x, -32.0, 3.0, 0.0);
V = (x / 32.0).^2 / 2;
H = hamiltonian(N, dx, V);
simulate = create_simulator(H, 1.0); % Create a new simulator function each time the script runs
figure;
fill([x, fliplr(x)], [V/10.0, zeros(1, numel(V))], 'r', 'FaceAlpha', 0.1, 'EdgeColor', 'none')
hold on;
h_plot = plot(x, probability_density(psi));
hold on;
title('Time Evolution of a Gaussian Wavepacket');
xlabel('Position');
ylabel('Probability Density');
axis([-64 64 0 0.15])
h_text = text(min(x), max(probability_density(psi)), sprintf('t = %.2f', 0), 'VerticalAlignment', 'middle');
M=500;
for k = 1:M
[psi, time] = simulate(psi);
set(h_plot, 'YData', probability_density(psi));
set(h_text, 'String', sprintf('t = %.2f', time));
movieVector(M) = getframe;
pause(0.1);
end
function H = hamiltonian(N, dx, V)
e = ones(N, 1);
A = spdiags([e -2 * e e], -1:1, N, N);
L = A / (dx^2);
H = -L + spdiags(V', 0, N, N);
H = sparse(H);
end
function psi = gaussian_wavepacket(x, x0, sigma0, p0)
A = (2 * pi * sigma0^2)^(-0.25);
psi = A * exp(1i * p0 * x - ((x - x0) / (2 * sigma0)).^2);
psi = psi.'; % Return as a column vector
end
function U = time_evolution_operator(H, dt)
U = expm(-1i * H * dt);
U(abs(U) < 1E-12) = 0;
U = sparse(U);
end
function prob_density = probability_density(psi)
prob_density = abs(psi).^2;
end
function simulate = create_simulator(H, dt)
U = time_evolution_operator(H, dt);
t = 0;
simulate = @simulate_func; % Return handle to nested function
function [psi, time] = simulate_func(psi)
time = t * dt;
psi = U * psi;
t = t + 1;
end
end
%my potential as V = (1/2) * (x/32)^2. I create a harmonic potential of the form (1/2) * m * ω^2 * x^2,
%and assuming m = 1 for simplicity, then ω^2 = 1/32^2, and ω = 1/32.
%This means my classical period T should be T = 2π * 32 = ~200.6
%but in the simulation, the period is about 142.
%I don't know why?
%Your help would be highly appreciated.
  1 件のコメント
Florian Rössing
Florian Rössing 2023 年 6 月 22 日
I have studied physics, so I have seen the problem already. But: This is a Matlab Forum. Could you please provide the Math that yields your expected result so we can compare that against the code.

サインインしてコメントする。

採用された回答

David Goodmanson
David Goodmanson 2023 年 6 月 23 日
編集済み: David Goodmanson 2023 年 6 月 23 日
Hi Daniel,
Nice animation. Looks like in your 'hamiltonian' function, the kinetic energy is missing a factor of 1/2. Changing the line to
L = (1/2)*A / (dx^2)
gives a period right around 200.

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeQuantum Mechanics についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by