How to use 5 function coupled each other using ODE45? it is possible?

5 ビュー (過去 30 日間)
I have a coupled differential equation. I'm confused why my M3, O, and P values are 0. Even though the initial conditions M2, M3, O and P are 0 but only M2 has a value. Is there something wrong with the function?
function CM1 = mymode (t,M1,M2,M3,O,P)
M1= 10;
M2 = 0;
M3 = 0;
O = 0;
P=0;
delta=50;
gamma=75;
K1= 10^-4;
K2=5*10^-4;
K3=10^-3;
Ko=0.1;
n=3;
Oa=10;
Pa=100;
mu_1=10^-3;
mu_2=10^-3;
mu_3=10^-3;
mu_o=10^-4;
mu_p= 10^-5;
CM1= zeros(5,1);
CM1(1) = (delta*M1*(1-(M1/gamma))-2*K1*M1*M1-M1*(K2*M2)-((Oa-n)*K3*M1*M3)-((Pa-Oa)*Ko*M1*O)-(mu_1*M1));
CM1(2) = (K1*M1*M1)-(K2*M1*M2)-(mu_2*M2);
CM1(3) = (K2*M1*M2)-(K3*M1*M3)-(mu_3*M3);
CM1(4) = (K3*M1*M3)-(Ko*M1*O)-(mu_o*O);
CM1(5) = (Ko*M1*O)-(mu_p*P);
end
[t,M1,M2,M3,O,P] = ode45(@mymode, [0,100],[0,0.01])
plot (t,M1,M2,M3,O,P)
  4 件のコメント
Torsten
Torsten 2023 年 6 月 20 日
編集済み: Torsten 2023 年 6 月 20 日
This is a Runge-Kutta-4 code for your problem. Try to understand how "runge_kutta_RK4" works on your system of equations to do better next time.
tstart = 0.0;
tend = 100.0;
dt = 0.01;
T = (tstart:dt:tend).';
Y0 = [10 0 0 0 0];
f = @myode;
Y = runge_kutta_RK4(f,T,Y0);
M1 = Y(:,1);
M2 = Y(:,2);
M3 = Y(:,3);
O = Y(:,4);
P = Y(:,5);
figure
subplot(3,1,1)
plot(T,M1),grid, title('M1')
subplot(3,1,2)
plot(T,M2),grid, title('M2')
subplot(3,1,3)
plot(T,M3),grid, title('M3')
figure
subplot(2,1,1)
plot(T,O),grid, title('O')
subplot(2,1,2)
plot(T,P),grid, title('P')
function Y = runge_kutta_RK4(f,T,Y0)
N = numel(T);
n = numel(Y0);
Y = zeros(N,n);
Y(1,:) = Y0;
for i = 2:N
t = T(i-1);
y = Y(i-1,:);
h = T(i) - T(i-1);
k0 = f(t,y);
k1 = f(t+0.5*h,y+k0*0.5*h);
k2 = f(t+0.5*h,y+k1*0.5*h);
k3 = f(t+h,y+k2*h);
Y(i,:) = y + h/6*(k0+2*k1+2*k2+k3);
end
end
function CM1 = myode (~,MM)
M1 = MM(1);
M2 = MM(2);
M3 = MM(3);
O = MM(4);
P = MM(5);
delta=50;
gamma=75;
K1= 10^-4;
K2=5*10^-4;
K3=10^-3;
Ko=0.1;
n=3;
Oa=10;
Pa=100;
mu_1=10^-3;
mu_2=10^-3;
mu_3=10^-3;
mu_o=10^-4;
mu_p= 10^-5;
CM1= zeros(1,5);
CM1(1) = (delta*M1*(1-(M1/gamma))-2*K1*M1*M1-M1*(K2*M2)-((Oa-n)*K3*M1*M3)-((Pa-Oa)*Ko*M1*O)-(mu_1*M1));
CM1(2) = (K1*M1*M1)-(K2*M1*M2)-(mu_2*M2);
CM1(3) = (K2*M1*M2)-(K3*M1*M3)-(mu_3*M3);
CM1(4) = (K3*M1*M3)-(Ko*M1*O)-(mu_o*O);
CM1(5) = (Ko*M1*O)-(mu_p*P);
end
cindyawati cindyawati
cindyawati cindyawati 2023 年 6 月 20 日
thank you @Torsten

サインインしてコメントする。

採用された回答

Alan Stevens
Alan Stevens 2023 年 6 月 20 日
Better like this:
MM0 = [10, 0, 0, 0, 0];
tspan = [0 100];
[t, MM] = ode15s(@mymode, tspan,MM0);
M1 = MM(:,1);
M2 = MM(:,2);
M3 = MM(:,3);
O = MM(:,4);
P = MM(:,5);
figure
subplot(3,1,1)
plot(t,M1),grid, title('M1')
subplot(3,1,2)
plot(t,M2),grid, title('M2')
subplot(3,1,3)
plot(t,M3),grid, title('M3')
figure
subplot(2,1,1)
plot(t,O),grid, title('O')
subplot(2,1,2)
plot(t,P),grid, title('P')
function CM1 = mymode (~,MM)
M1 = MM(1);
M2 = MM(2);
M3 = MM(3);
O = MM(4);
P = MM(5);
delta=50;
gamma=75;
K1= 10^-4;
K2=5*10^-4;
K3=10^-3;
Ko=0.1;
n=3;
Oa=10;
Pa=100;
mu_1=10^-3;
mu_2=10^-3;
mu_3=10^-3;
mu_o=10^-4;
mu_p= 10^-5;
CM1= zeros(5,1);
CM1(1) = (delta*M1*(1-(M1/gamma))-2*K1*M1*M1-M1*(K2*M2)-((Oa-n)*K3*M1*M3)-((Pa-Oa)*Ko*M1*O)-(mu_1*M1));
CM1(2) = (K1*M1*M1)-(K2*M1*M2)-(mu_2*M2);
CM1(3) = (K2*M1*M2)-(K3*M1*M3)-(mu_3*M3);
CM1(4) = (K3*M1*M3)-(Ko*M1*O)-(mu_o*O);
CM1(5) = (Ko*M1*O)-(mu_p*P);
end
  3 件のコメント
Alan Stevens
Alan Stevens 2023 年 6 月 20 日
Yes, you can also use ode45 - it just uses more points over the time span.
cindyawati cindyawati
cindyawati cindyawati 2023 年 6 月 20 日
Oke thank you

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeOrdinary Differential Equations についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by