Function optimization meeting conditions
1 回表示 (過去 30 日間)
古いコメントを表示
How can i optimize the I function, i want to find the values of h(j) that minimize I, meetentig the conditions h(j+1)>h(j), h(end)<120 and h(j+1)-h(j)<1.25 ?
ht is a array beiing its size ht(lt,lc) or the same ht(i,j) and it is calculated in another function. The formula of Ins is Ins=ht(i,j)-h(j).
Thanks for the help
function [h] = hp(ht, Lc, Lt)
lt = 0:0.5:Lt;
lc = 0:0.5:Lc;
Ins = cell(length(lt), length(lc));
h= cell(length(Lc));
for i = 1:length(lt)
for j = 1:length(lc)
Ins{i,j} = @(h) (ht(i,j) - h);
end
end
h0 = zeros(size(lc));
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
nonlcon = @constraints;
h = fmincon(@(h) Ins, h0, A, b, Aeq, beq, lb, ub, nonlcon);
end
function [c] = constraints(h)
c>0;
c = h(2:end) - h(1:end-1);
end
10 件のコメント
Torsten
2023 年 6 月 8 日
編集済み: Torsten
2023 年 6 月 8 日
If ht is nxm, the linear constraints can be defined by A and b as in the code below.
A and b are then used in the call to the optimizer, e.g.
Now it's your turn to define the objective function and the call to "fmincon" (or some similar optimizer).
(And incidentally the .^2 appears for the summands in the objective :-) )
m = 4;
v1 = ones(m,1);
w1 = -ones(m-1,1);
A1 = diag(v1) + diag(w1,1)
b1 = [zeros(m-1,1);120];
v2 = -ones(m,1);
w2 = ones(m-1,1);
A2 = diag(v2) + diag(w2,1);
A2(end,:) = []
b2 = 1.25*ones(m-1,1);
A = [A1;A2]
b = [b1;b2]
採用された回答
Torsten
2023 年 6 月 8 日
移動済み: Torsten
2023 年 6 月 8 日
ht = rand(401,51);
[n,m]=size(ht);
I=@(h) sum(sum((ht-h).^2));
h0 = zeros(1,m);
v1 = ones(m,1);
w1 = -ones(m-1,1);
A1 = diag(v1) + diag(w1,1);
b1 = [zeros(m-1,1);120];
v2 = -ones(m,1);
w2 = ones(m-1,1);
A2 = diag(v2) + diag(w2,1);
A2(end,:) = [];
b2 = 1.25*ones(m-1,1);
A = [A1;A2];
b = [b1;b2];
[h,fval,exitflag] = fmincon(I,h0,A,b)
その他の回答 (1 件)
rakshit gupta
2023 年 6 月 7 日
You can consider following changes to the code to optimize the function while meeting the condition h(j+1)>h(j).
- Modify the Ins cell array to a function handle that takes in the h array.
Ins = @(h) ht - h;
2. Modify the h array to a vector instead of a cell array.
h = zeros(size(lc));
3. Add the upper bound constraint to ensure h(j+1) > h(j).
ub = inf(size(h));
ub(end) = h(end);
4. Modify the constraints function to return the inequality constraint.
function [c, ceq] = constraints(h)
c = h(2:end) - h(1:end-1);
ceq = [];
end
5. Call the fmincon function with the changes made above.
h = fmincon(Ins, h, A, b, Aeq, beq, lb, ub, @constraints);
These changes could help in optimizing the function.
6 件のコメント
rakshit gupta
2023 年 6 月 8 日
Yes, you can try modifying 'h' vector by changing the creation of the 'h' vector to use the same size and data type as 'ht',
h = zeros(size(ht), 'like', ht);
This may help in making Ins scalar.
参考
カテゴリ
Help Center および File Exchange で Surrogate Optimization についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!