Converged neural network states

2 ビュー (過去 30 日間)
Siva
Siva 2015 年 4 月 12 日
回答済み: Siva 2015 年 4 月 23 日
Hi -
I am wondering why I don’t arrive at the same trained network (net1f and net3f) even though I believe I have started from the same initial network state.
clear all, pack [x,t] = simplefit_dataset;
%% 1st trial net1i = feedforwardnet( 1); net1i= configure( net1i, x, t) ; IW1i= net1i.IW ; LW1i= net1i.LW ; b1i= net1i.b ; net1f = trainscg( net1i, x, t); IW1f= net1f.IW ; LW1f= net1f.LW ; b1f= net1f.b ;
%% 3rd trial with controlled initialization net3i = feedforwardnet( 1); net3i= configure( net3i, x, t) ; net3i.IW= IW1i ; net3i.LW= LW1i ; net3i.b= b1i ; net3f = trainscg( net3i, x, t); IW3f= net3f.IW ; LW3f= net3f.LW ; b3f= net3f.b ;
I appreciate your help.
Thanks. Siva

採用された回答

Greg Heath
Greg Heath 2015 年 4 月 23 日
You have to explicitly reset the RNG state to the same initial value. To illustrate this. Check the RNG state before each training.
Hope this helps.
Greg.

その他の回答 (1 件)

Siva
Siva 2015 年 4 月 23 日
Thanks Greg!
Siva

カテゴリ

Help Center および File ExchangeDeep Learning Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by