How to restart optimization with ga ?
8 ビュー (過去 30 日間)
古いコメントを表示
I'm using the matlab function ga() to perform an optimization. The optmization run on a cluster which queues have limited job time (72hours). My answer is:
Once the Job has been killed (because maximum Job time has been exceeded), is there any way to restart the optmization?
0 件のコメント
回答 (1 件)
Star Strider
2023 年 6 月 5 日
編集済み: Star Strider
2023 年 6 月 5 日
You can save the fittest individuals in each generation during the optimisation, then use the last (or all) of them to re-start ga. I wrote a function that I named ‘SaveOut’ to save the fittest individual in each generation for situations in which the compouter running the ga optimisation crashes or is interrupted such as in the one you describe. You can use it to re-start ga from where you previously left off.
An Example Using The ‘SaveOut’ Function To Save The Best Individuals In Each Generation —
t=[0.1
0.2
0.4
0.6
0.8
1
1.5
2
3
4
5
6];
c=[0.902 0.06997 0.02463 0.00218
0.8072 0.1353 0.0482 0.008192
0.6757 0.2123 0.0864 0.0289
0.5569 0.2789 0.1063 0.06233
0.4297 0.3292 0.1476 0.09756
0.3774 0.3457 0.1485 0.1255
0.2149 0.3486 0.1821 0.2526
0.141 0.3254 0.194 0.3401
0.04921 0.2445 0.1742 0.5277
0.0178 0.1728 0.1732 0.6323
0.006431 0.1091 0.1137 0.7702
0.002595 0.08301 0.08224 0.835];
theta0=[1;1;1;1;1;1];
ftns = @(theta) norm(c-kinetics(theta,t));
PopSz = 100;
Parms = 10; % Last Four Parameters Are Initial Conditions to rkinetics’ Differential Equations
% opts = optimoptions('ga', 'PopulationSize',PopSz, 'InitialPopulationMatrix',randi(1E+4,PopSz,Parms)*1E-3, 'MaxGenerations',2E3, 'PlotFcn',@gaplotbestf, 'PlotInterval',1, 'OutputFcn',@SaveOut);
Ansopts = optimoptions('ga', 'PopulationSize',PopSz, 'InitialPopulationMatrix',randi(1E+4,PopSz,Parms)*1E-3, 'MaxGenerations',2E3, 'OutputFcn',@SaveOut);
t0 = clock;
fprintf('\nStart Time: %4d-%02d-%02d %02d:%02d:%07.4f\n', t0)
[theta,fval,exitflag,output] = ga(ftns, Parms, [],[],[],[],zeros(Parms,1),Inf(Parms,1),[],[],Ansopts);
t1 = clock;
fprintf('\nStop Time: %4d-%02d-%02d %02d:%02d:%07.4f\n', t1)
GA_Time = etime(t1,t0)
DT_GA_Time = datetime([0 0 0 0 0 GA_Time], 'Format','HH:mm:ss.SSS');
fprintf('\nElapsed Time: %23.15E\t\t%s\n\n', GA_Time, DT_GA_Time)
fprintf(1,'\tRate Constants:\n')
for k1 = 1:length(theta)
fprintf(1, '\t\tTheta(%2d) = %8.5f\n', k1, theta(k1))
end
tv = linspace(min(t), max(t));
Cfit = kinetics(theta, tv);
figure
hd = plot(t, c, 'p');
for k1 = 1:size(c,2)
CV(k1,:) = hd(k1).Color;
hd(k1).MarkerFaceColor = CV(k1,:);
end
hold on
hlp = plot(tv, Cfit);
for k1 = 1:size(c,2)
hlp(k1).Color = CV(k1,:);
end
hold off
grid
xlabel('Time')
ylabel('Concentration')
legend(hlp, compose('C%d(t)',1:size(Cfit,2)), 'Location','N')
fprintf(1,'\n\n')
Cfit_mtx = kinetics(theta, t); % Calculate R² For Each Compartment
for k = 1:size(Cfit,2)
ypred = Cfit_mtx(:,k);
SSE = sum((c(:,k)-ypred).^2);
SST = sum((c(:,k)-mean(c(:,k))).^2);
Rsq(k) = 1 - (SSE/SST);
fprintf('\t\tR² c(%2d) = %7.4f\n',k, Rsq(k))
end
BestInGen = load('SaveBest.mat')
LastFive = BestInGen.Var(end-4:end,:)
function C=kinetics(theta,t)
c0 = theta(7:10);
[T,Cv]=ode45(@DifEq,t,c0);
%
function dC=DifEq(t,c)
dcdt=zeros(4,1);
dcdt(1)=-theta(1).*c(1)-theta(2).*c(1);
dcdt(2)= theta(1).*c(1)+theta(4).*c(3)-theta(3).*c(2)-theta(5).*c(2);
dcdt(3)= theta(2).*c(1)+theta(3).*c(2)-theta(4).*c(3)+theta(6).*c(4);
dcdt(4)= theta(5).*c(2)-theta(6).*c(4);
dC=dcdt;
end
C=Cv;
end
function [state,options,changed,str] = SaveOut(options,state,flag)
file_name = 'SaveBest.mat'; % Name File
if strcmp(flag,'init')
Var = state.Population;
save(file_name, 'Var') % Write ‘Best Individual’ To File
elseif strcmp(flag,'iter')
ibest = state.Best(end);
ibest = find(state.Score == ibest,1,'last');
bestx = state.Population(ibest,:);
previous = load('SaveBest.mat');
Var = [previous.Var; bestx]; % Read Previous Results, Append New Value
save(file_name, 'Var') % Write ‘Best Individual’ To File
end
changed = true; % Necessary For Cide, Use App
end
EDIT — (5 Jun 2023 at 14:39)
Improved description, code unchanged.
.
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Problem-Based Global Optimization Setup についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!