How to calculate wavenumber, for fft2 of a 2D array?
35 ビュー (過去 30 日間)
古いコメントを表示
I have perfomed fft2 on an image/2D-array (361x211). When I plot the result, using imagesc, I would like to label the axes with wavenumbers. However, for the fft2 output, I do not know how to calculate the wavenumbers (I commented out my this part of my code). Is it related to the image resolution (dpi)?
My code and output plots (amplitude and phase) are attached below. Thanks!
data = load ('86tr.txt'); % load xyz file
x = data(:,1); % longitude
y = data(:,2); % latitude
z = data(:,3); % anomaly (nano Tesla)
% Find the size (row,col) of the xyz file
row = length(unique(x));
col = length(unique(y));
% Reshape and transpose z values to get correct data orientaion
zm = reshape(z,row,col);
zm = fliplr(zm);
zm = zm';
% Perform fft2 on z-values (nT)
fft2_zm = fftshift(log(abs(fft2(zm)))); % amplitude
% phase_zm = angle(fftshift(fft2(zm))); % phase
% % Calculate wavenumbers
% Nc = col; Nr = row;
% dp = 1/300; % dpi = 300?
% kx = (-Nr/2:Nr/2-1)/(Nr*dp);
% ky = (-Nc/2:Nc/2-1)/(Nc*dp);
figure(1);
imagesc(fft2_zm); colorbar;
6 件のコメント
Star Strider
2023 年 5 月 28 日
The spatial frequency would be in terms of . I am not certain that it would be possible to expres anything about your data in terms of wavenumber.
I deleted my Answer because it became obvious to me that it was not going to provide the result you want, essentially because I am not certain that is possible.
採用された回答
Hiro Yoshino
2023 年 5 月 27 日
We use "normalized frequency" with FFT and this is a linear transformation between the time space and the frequency space. So the number of points along the x-axis and the y-axis corresponds to the wavenumber.
<< This is what I called "normalized frequency".
If you ask me, I would rewrite your code as follows:
data = load ('86tr.txt'); % load xyz file
x = data(:,1); % longitude
y = data(:,2); % latitude
z = data(:,3); % anomaly (nano Tesla)
% Find the size (row,col) of the xyz file
row = length(unique(x));
col = length(unique(y));
% Reshape and transpose z values to get correct data orientaion
zm = reshape(z,row,col);
zm = fliplr(zm);
zm = zm';
% Perform fft2 on z-values (nT)
fft2_zm = fftshift(log(abs(fft2(zm)))); % amplitude
% phase_zm = angle(fftshift(fft2(zm))); % phase
% % Calculate wavenumbers
% Nc = col; Nr = row;
% dp = 1/300; % dpi = 300?
% kx = (-Nr/2:Nr/2-1)/(Nr*dp);
% ky = (-Nc/2:Nc/2-1)/(Nc*dp);
figure(1);
%imagesc(fft2_zm); colorbar;
x_axis = linspace(-pi,pi,size(fft2_zm,1));
y_axis = linspace(-pi,pi,size(fft2_zm,2));
imagesc('XData',x_axis,'YData',y_axis,'CData',fft2_zm);
xlim([x_axis(1),x_axis(end)]);
ylim([y_axis(1),y_axis(end)]);
xlabel('Rad');
ylabel('Rad');
ax = gca;
ax.XTick = [-pi, -pi/2, 0, pi/2, pi];
ax.YTick = [-pi, -pi/2, 0, pi/2, pi];
ax.XTickLabel = {"-\pi", "-\pi/2", "0","\pi/2", "/pi"};
ax.YTickLabel = {"-\pi", "-\pi/2", "0","\pi/2", "/pi"};
8 件のコメント
Hiro Yoshino
2023 年 6 月 14 日
The power spectrum we got is typical. We often see the highest power at lower frequencies.
Unless we have specific high frequencies in the data, we normally observe similar powe spectrums.
The energy at 0 frequency corresponds to the bias. So you can remove it by subtracting the mean value from the data.
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Spectral Measurements についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!