How to find the maximum value of two variables of a function in MATLAB

3 ビュー (過去 30 日間)
Hadeel Obaid
Hadeel Obaid 2023 年 5 月 10 日
コメント済み: Matt J 2023 年 6 月 20 日
Hi everyone,
I would like to find the maximum value of \eta and xo in the function below using numerical simulation:
z=1e6*log2(1+(10^(30/10)*4*(3e8/(4*pi*1e12))^2*15^(-4)*exp(-0.0016*15))/10^(-90/10))*(-1/(1e4^(1-0.5)-1))+ 1e6*log2(1+(10^(30/10)*4*(3e8/(4*pi*1e12))^2*x0^(-2)*exp(-0.0016*x0))/10^(-90/10))*((100/eta)^(1-0.5)-1)/(1e4^(1-0.5)-1);
\eta range and xo range are:
eta_range = 0.01:0.01:1;
x0_range = 1:1:100;
  2 件のコメント
Rik
Rik 2023 年 6 月 20 日
I recovered the removed content from the Google cache (something which anyone can do). Editing away your question is very rude. Someone spent time reading your question, understanding your issue, figuring out the solution, and writing an answer. Now you repay that kindness by ensuring that the next person with a similar question can't benefit from this answer.
Matt J
Matt J 2023 年 6 月 20 日
Back-up copy of Hadeel Obaid's question:
Hi everyone,
I would like to find the maximum value of \eta and xo in the function below using numerical simulation:
z=1e6*log2(1+(10^(30/10)*4*(3e8/(4*pi*1e12))^2*15^(-4)*exp(-0.0016*15))/10^(-90/10))*(-1/(1e4^(1-0.5)-1))+ 1e6*log2(1+(10^(30/10)*4*(3e8/(4*pi*1e12))^2*x0^(-2)*exp(-0.0016*x0))/10^(-90/10))*((100/eta)^(1-0.5)-1)/(1e4^(1-0.5)-1);
\eta range and xo range are:
eta_range = 0.01:0.01:1;
x0_range = 1:1:100;

サインインしてコメントする。

回答 (2 件)

Matt J
Matt J 2023 年 5 月 10 日
編集済み: Matt J 2023 年 5 月 10 日
Your function z is separable and monotonically decreasing in both variables. So, it should come as no surprise that the smallest values of eta and x0 give the maximum. However, you can verify that with the code below:
eta = (0.01:0.01:1)';
x0 = (1:100);
z=1e6.*log2(1+(10.^(30./10).*4.*(3e8./(4.*pi.*1e12)).^2.*15.^(-4).*exp(-0.0016.*15))./10.^(-90./10)).*(-1./(1e4.^(1-0.5)-1))+ 1e6.*log2(1+(10.^(30./10).*4.*(3e8./(4.*pi.*1e12)).^2.*x0.^(-2).*exp(-0.0016.*x0))./10.^(-90./10)).*((100./eta).^(1-0.5)-1)./(1e4.^(1-0.5)-1);
[maxval,k]=max(z,[],'all','linear')
maxval = 1.1152e+07
k = 1
[i,j]=ind2sub(size(z),k);
eta_max=eta(i),
eta_max = 0.0100
x0_max=x0(j),
x0_max = 1
  3 件のコメント
Hadeel Obaid
Hadeel Obaid 2023 年 5 月 11 日
@Walter Robersonbut each one has different results?
Matt J
Matt J 2023 年 5 月 11 日
@Hadeel Obaid Torsten and I reached the same result. And, as I outlined above, you did not need any code to reach this result. The maximizing point is obvious from the expression for z.

サインインしてコメントする。


Torsten
Torsten 2023 年 5 月 10 日
eta = 0.01:0.01:1;
x0 = (1:1:100).';
z = 1e6*log2(1+(10^(30/10)*4*(3e8/(4*pi*1e12))^2*15^(-4)*exp(-0.0016*15))/10^(-90/10))*(-1/(1e4^(1-0.5)-1))+ 1e6*log2(1+(10^(30/10)*4*(3e8/(4*pi*1e12))^2*x0.^(-2).*exp(-0.0016*x0))/10^(-90/10))*((100./eta).^(1-0.5)-1)/(1e4^(1-0.5)-1);
maximum_z = max(max(z))
maximum_z = 1.1152e+07
[i,j] = find(z==maximum_z)
i = 1
j = 1

カテゴリ

Help Center および File ExchangeLogical についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by