Writing a custom Selection Function for a Genetic Algorithm problem
6 ビュー (過去 30 日間)
古いコメントを表示
Hey guys, I am a bit lost on this. Any help would be appreciated. Essentially my problem is this: I want to write a custom SelectionFcn for my GA to select the 25 best parents and then select 2 at random to create 25 children. And the children should be the arithmetic mean between the parents.
I have olny gotten as far as this:
function parents = parents(expectation, nParents, options, state)
nParents = 25
parents = zeros(1,nParents);
% get the scores of the current population
curPopScores = state.Score;
% get the 25 best parents
if length(curPopScores)>25
% created matrix with scores and indices for each parent
if iscolumn(curPopScores)
data = [curPopScores'; 1:length(curPopScores)];
else
data = [curPopScores'; 1:length(curPopScores)];
end
% now sort the data on the column that corresponds to the scores
% (-1 means sort the first column in descending order)
sortedData = sortrows(data',-1);
% get the sorted parent indices from the first 25 elements
parents = sortedData(1:25,2);
That should work except I am unable to access the scores with "state.Score"
0 件のコメント
採用された回答
Alan Weiss
2015 年 4 月 20 日
I am sorry that the documentation is not clear on this point. I will try to improve it.
function parents = myfun(expectation, nParents, options)
The question is what does the expectation argument mean? In fact, it is the vector of scaled fitness functions associated with the members of the population. So if you want the best 25 members, just sort expectation and take the top 25.
Alan Weiss
MATLAB mathematical toolbox documentation
2 件のコメント
その他の回答 (2 件)
Geoff Hayes
2015 年 4 月 4 日
Renovatio - I don't have the Global Optimization Toolbox, but I suspect that you have to do something like the following (note that expectation and nParents are inputs to your function so you may not want to overwrite them)
function parents = parents(expectation, nParents, options)
nParents = 25
parents = zeros(1,nParents);
% get the current state of the GA
state = gaoptimget(options, 'state');
% get the scores of the current population
curPopScores = state.Score;
% get the 25 best parents
if length(curPopScores)>25
% created matrix with scores and indices for each parent
if iscolumn(curPopScores)
data = [curPopScores'; 1:length(curPopScores)];
else
data = [curPopScores'; 1:length(curPopScores)];
end
% now sort the data on the column that corresponds to the scores
% (-1 means sort the first column in descending order)
sortedData = sortrows(data',-1);
% get the sorted parent indices from the first 25 elements
parents = sortedData(1:25,2);
else
parents = 1:25;
end
The above should allow you to select the best 25 parents from the current generation. For more details on the state structure, see GA options.
yuan feng
2017 年 12 月 10 日
hello,i want to write a custom mutation function, but i don't know how to write, i would appreciate it if you can help me.
2 件のコメント
参考
カテゴリ
Help Center および File Exchange で Genetic Algorithm についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!