Solving Riccati equation using LMI algorithm

23 ビュー (過去 30 日間)
Gilad Shaul
Gilad Shaul 2023 年 4 月 29 日
回答済み: Samyuktha 2023 年 5 月 24 日
I am tring to solve Riccati equation using LMI algorithm, but I can't find a solver that can support quadratic semidefinite constraints. The goal is to minimize P then calculate the optimal gain K.
I tried: 'mosek', 'scs', 'sdpt3'
I run the following code and get an error:
Warning: Solver not applicable (scs does not support quadratic semidefinite constraints)
LMI problem infeasible or failed
%% Vehicle Parameters
m=1573;
Iz=2873;
l1=1.58;
l2=1.1;
lh=7;
Ca1=80000;
Ca2=80000;
vx_max=25;
vx_min=15;
%% Matrix Variables
A_22=-2*(Ca2+Ca1)/(m*vx_max);
A_23= 2*(Ca2+Ca1)/m;
A_24=-2*(Ca2*l2-Ca1*l1)/(m*vx_max);
A_42=-2*(Ca2*l2-Ca1*l1)/(Iz*vx_max);
A_43= 2*(Ca2*l2-Ca1*l1)/Iz;
A_44=-2*(-Ca2*((l2)^2)+Ca1*((l1)^2))/(Iz*vx_max);
A_1 = [0 1 0 0; 0 A_22 A_23 A_24; 0 0 0 1; 0 A_42 A_43 A_44];
%% B&Q&R
B = [0; 2*Ca2/m; 0; 2*Ca2*l2/Iz];
q11=1;
q12=0;
q21=0;
q22=0;
Q=diag([q11,q12,q21,q22]);
R = 1;
%% Riccati Equations
% Care_max = A_1'*P + P*A_1 - P*B*inv(R)*B'*P + Q <= 0;
% Care_min = A_2'*P + P*A_2 - P*B*inv(R)*B'*P + Q <= 0;
%% Define LMI variables
P = sdpvar(4);
L = sdpvar(1, 4);
%% Define LMI constraints
% F = [A_1'*P + P*A_1 - P*B*inv(R)*B'*P + Q <= 0; P >= 0; [1; 0; 0; 0]*L*B == 1;
% L >= 0;
% (A_1 + B*L)'*P + P*(A_1 + B*L) <= 0];
F = [[A_1'*P+P*A_1+Q P*B; B'*P -eye(1,1)] <= 0; P >= 0; [1; 0; 0; 0]*L*B == 1;
L >= 0;
(A_1 + B*L)'*P + P*(A_1 + B*L) <= 0];
%% Define objective function
obj = trace(Q*P);
%% Define LMI options
opts = sdpsettings('solver', 'scs', 'verbose', 0);
%% Solve LMI
sol = optimize(F, obj, opts);
%% Check feasibility and extract solution
if sol.problem ~= 0
error('LMI problem infeasible or failed');
else
P_sol = value(P);
L_sol = value(L);
end
%% Compute optimal gain
K = inv(R)*B'*P_sol;
%% Display results
disp('Optimal Gain =');
disp(K);

回答 (1 件)

Samyuktha
Samyuktha 2023 年 5 月 24 日
Hi Gilad,
You can choose any of the three algorithms that Quadratic Programming Algorithms ('quadprog') supports:
  • 'interior-point-convex' (default)
  • 'trust-region-reflective'
  • 'active-set'
Since you have a positive semidefinite problem with a large number of linear constraints and not a large number of variables, try 'active-set'. Please refer to the following documentation links for more information:
Hope it helps!

カテゴリ

Help Center および File ExchangeDirect Search についてさらに検索

製品


リリース

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by