I used this link which work in one column Latex document, why it does not work with two column Latex document?
\begin{figure*}
\centering
\begin{subfigure}[t]{0.49\textwidth}
\centering
\includegraphics[width=\textwidth]{diract=0.png}
\caption{$f_k(z)$ and $f_b(z)$ representations of the states $| f\rangle $ and $\langle f |$ at $t=0$.}
% which at $t=0$ is given in the Eq(27).}
\label{fig:y equals x}
\end{subfigure}
\hfill
\begin{subfigure}[t]{0.50\textwidth}
\centering
\includegraphics[width=\textwidth]{diracexamle2kbnonperiodict=1.png}
\caption{$f_k(z)$ and $f_b(z)$ representations of the states $|f\rangle $
and $\langle f |$ at $t=1$.}
% which at $ t=0 $ is given in the Eq(81), by using Hamiltonian in Eq(101) that has the eigenvalues -5.7091, 0.0478, 3.6612, $t=1$.}
\label{fig:three sin x}
\end{subfigure}
\hfill
\begin{subfigure}[t]{0.49\textwidth}
\centering
\includegraphics[width=\textwidth]{diracexamle2kbnonperiodict=2.png}
\caption{$f_k(z)$ and $f_b(z)$ representations of the states $|f\rangle $
and $\langle f |$ at $t=2$.}
% which at $ t=0 $ is given in the Eq(81), by using Hamiltonian in Eq(6.46) that has the eigenvalues -5.7091, 0.0478, 3.6612, $t=2$.}
\label{fig:five over x}
\end{subfigure}
\hfill
\begin{subfigure}[t]{0.49\textwidth}
\centering
\includegraphics[width=\textwidth]{diracexamle2kbnonperiodict=pi.png}
\caption{$f_k(z)$ and $f_b(z)$ representations of the states $|f \rangle$ and $\langle f |$ at $t=\pi$.}
% which at $ t=0 $ is given in the Eq(81), by using Hamiltonian in Eq(6.46) that has the eigenvalues -5.7091, 0.0478, 3.6612, $t=\pi$}
\label{fig:three sin x}
\end{subfigure}
\hfill
\begin{subfigure}[t]{0.49\textwidth}
\centering
\includegraphics[width=\textwidth]{diracexamle2kbnonperiodict=2pi.png}
\caption{$f_k(z)$ and $f_b(z)$ representations of the states $|f\rangle $
and $\langle f |$ at $t=2\pi$}
% which at $ t=0 $ is given in the Eq(81), by using Hamiltonian in Eq(101) that has the eigenvalues -5.7091, 0.0478, 3.6612, $t=2\pi$. As we can see, the figures do not return to initial position at $t=0$ because the system is not periodic}
\label{fig:three sin x}
\end{subfigure}
\caption{ Time evolution of the $\mathcal{H}_{(2j+1)}$ system is described by the movement of the magnitude and the phase of Dirac contour representation
functions $f_k(z)$ and $f_b(z)$ of the states $|f \rangle$,
which at $ t=0 $ is given in the Eq(6.45), and $\langle f |$ by using Hamiltonian in Eq(6.44) that has the eigenvalues -5.7091, 0.0478, 3.6612.}
\label{fig:three graphs}
% \caption{Three simple graphs}
% \label{fig:three graphs}
\end{figure*}
I appreciate any help