Numerically solving a diffusion equation with a piecewise initial condition

20 ビュー (過去 30 日間)
Bas123
Bas123 2023 年 4 月 25 日
コメント済み: Alexander 2023 年 12 月 2 日
Consider the diffusion equation given by with initial conditions and boundary conditions .
I wish to numerically solve this equation by the finite difference formula where with ∆x = 0.1 and ∆t = 0.01. The exact solution is given by
Here is the code that I have worked out so far.
clear all
D = 1/4;
dx = 0.1;
dt = 0.01;
x = 0:dx:1;
t = 0:dt:1;
Nx = length(x);
Nt = length(t);
u = zeros(Nx, Nt);
u(x<=1/2,1) = x(x<=1/2);
u(x>1/2,1) = 1 - x(x>1/2);
u(1,:) = 0;
u(Nx,:) = 0;
for j = 1:Nt-1
for i = 2:Nx-1
u(i,j+1) = D*(dt/dx^2)*(u(i+1,j) + u(i-1,j)) + (1-2*D*(dt/dx^2))*(u(i,j));
end
end
% Compute the analytical solution V(x,t)
k = 1:100;
V = zeros(length(x), length(t));
for j = 1:Nt
for i = 1:Nx
V(i,j) = sum((4./(k.*pi).^2).*sin(k.*pi/2).* sin(k.*pi.*x(i)).*exp(-D.*t(j).*(k.*pi).^2));
end
end
% Plot the numerical and exact solutions
figure;
[X,T] = meshgrid(x,t);
surf(X,T,u');
xlabel('x');
ylabel('t');
zlabel('u(x,t)');
title('Numerical solution');
figure;
surf(X,T,V');
xlabel('x');
ylabel('t');
zlabel('V(x,t)');
title('Exact solution');
However, there seems to be something wrong with the code. Any support would be greatly appreciated.
  3 件のコメント
Bas123
Bas123 2023 年 4 月 25 日
Hi Bill, thanks for your message. I am supposed to use an explicit finite difference method for the problem.
Alexander
Alexander 2023 年 12 月 2 日
Hi! This was really helpful code for a HW assignment I'm working on. My graphs are a little wacky as well, I am using different differencing schemes, but I think the problem may lie in your parameters. I think by finding the correct dx and dt you may be able to generate smoother graphs.
However I am also pretty new to this and not sure exactly how to find the best spatial and time step sizes. Good luck!

サインインしてコメントする。

採用された回答

Torsten
Torsten 2023 年 4 月 25 日
編集済み: Torsten 2023 年 4 月 25 日
I changed
V(i,j) = sum((4./(k.*pi).^2).*sin(k.*pi/2).* sin(k.*pi.*x(j)).*exp(-0.5.*t(i).*(k.*pi).^2));
to
V(i,j) = sum((4./(k.*pi).^2).*sin(k.*pi/2).* sin(k.*pi.*x(i)).*exp(-D.*t(j).*(k.*pi).^2));
in your code and the results look at least similar.
You should check the results in detail, i.e. plots of u over x for some times t or plots of u over t for some positions x. A surface plot looks fine, but is not suited to find errors or unprecise results.

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeEigenvalue Problems についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by