How to fix ode graphs?
1 回表示 (過去 30 日間)
古いコメントを表示
Hello, I'm trying to combine these two ode plots into one chart, but it gives me two different charts. Can someone please help me with this?
syms y(x) x Y
N=5;
r=0.05;
m=0.01;
p=1;
s=1;
t=0.1;
a=0.25;
b=0.25;
C0=1;
C=5;
t0= N+r+t*p*s-m;
t1=-(N+r+t*p*s-m);
Dy = diff(y);
D2y = diff(y,2);
ode = y-(1/x)*(N+r)-((t*p*s*Dy)/y)+((Dy*((s^2)-m))/y)+((D2y*x*(s^2))/(2*y));
[VF,Subs] = odeToVectorField(ode);
odefcn = matlabFunction(VF, 'Vars',{x,Y});
tspan = [C0 80];
ic = [t0 t1];
[x,y] = ode45(odefcn, tspan, ic);
figure
plot(x, y)
grid
hold on
syms y(x) x Y
f=(x+(x^2+4*r*x*(1-a-b))^0.5)/(2*(1-a-b));
t00=N/C;
t11=-N/(C^2);
Dy = diff(y);
D2y = diff(y,2);
ode2= y-((C-x+f*((1/(r+f))^(1/(1-a-b)))+t*p*s*x*Dy+x*Dy*((s^2)-m)+Dy*(C-x)+0.5*D2y*(x^2)*(s^2)-x*(s^2)*Dy)/x*(1+t*p*s-m));
[VF1,Subs1] = odeToVectorField(ode2);
odefcn1 = matlabFunction(VF1, 'Vars',{x,Y});
tspan2 = [C 1];
ic2 = [t00 t11];
[x,y] = ode45(odefcn1, tspan2, ic2);
figure
plot(x, y)
grid
hold off
0 件のコメント
採用された回答
Star Strider
2023 年 4 月 20 日
You are telling it to produce two different plots because of two separate figure calls.
syms y(x) x Y
N=5;
r=0.05;
m=0.01;
p=1;
s=1;
t=0.1;
a=0.25;
b=0.25;
C0=1;
C=5;
t0= N+r+t*p*s-m;
t1=-(N+r+t*p*s-m);
Dy = diff(y);
D2y = diff(y,2);
ode = y-(1/x)*(N+r)-((t*p*s*Dy)/y)+((Dy*((s^2)-m))/y)+((D2y*x*(s^2))/(2*y));
[VF,Subs] = odeToVectorField(ode);
odefcn = matlabFunction(VF, 'Vars',{x,Y});
tspan = [C0 80];
ic = [t0 t1];
[x1,y1] = ode45(odefcn, tspan, ic);
figure
plot(x1, y1)
grid
hold on
syms y(x) x Y
f=(x+(x^2+4*r*x*(1-a-b))^0.5)/(2*(1-a-b));
t00=N/C;
t11=-N/(C^2);
Dy = diff(y);
D2y = diff(y,2);
ode2= y-((C-x+f*((1/(r+f))^(1/(1-a-b)))+t*p*s*x*Dy+x*Dy*((s^2)-m)+Dy*(C-x)+0.5*D2y*(x^2)*(s^2)-x*(s^2)*Dy)/x*(1+t*p*s-m));
[VF1,Subs1] = odeToVectorField(ode2);
odefcn1 = matlabFunction(VF1, 'Vars',{x,Y});
tspan2 = [C 1];
ic2 = [t00 t11];
[x2,y2] = ode45(odefcn1, tspan2, ic2);
figure
plot(x2, y2)
grid
hold off
figure % All Together 1!
plot(x1,y1(:,1), 'DisplayName','(x_1,y_1_1)')
hold on
plot(x1,y1(:,2), 'DisplayName','(x_1,y_1_2)')
plot(x2, y2(:,1), 'DisplayName','(x_2,y_2_1)')
plot(x2, y2(:,2), 'DisplayName','(x_2,y_2_2)')
hold off
grid
legend('Location','best')
figure % All Together 2!
yyaxis left
plot(x1,y1(:,1), 'DisplayName','(x_1,y_1_1)')
hold on
plot(x1,y1(:,2), 'DisplayName','(x_1,y_1_2)')
hold off
yyaxis right
plot(x2, y2(:,1), 'DisplayName','(x_2,y_2_1)')
hold on
plot(x2, y2(:,2), 'DisplayName','(x_2,y_2_2)')
hold off
grid
legend('Location','best')
The ‘x’ limits in the two integrations are not the same.
.
2 件のコメント
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Ordinary Differential Equations についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!