Unable to solve stiff differential equation

1 回表示 (過去 30 日間)
AJMIT KUMAR
AJMIT KUMAR 2023 年 4 月 17 日
コメント済み: Sam Chak 2023 年 4 月 19 日
I have solved many nonlinear differential using ode45 previously.
For the current stiff nonlinear differential equation, I used ode45, ode15s, ode23s, ode23t and ode23tb but unable to get final results.
I got constant warnings which is mentioned below.
Warning: Failure at t=8.048300e+00. Unable to meet integration tolerances without reducing the step size below the
smallest value allowed (2.859330e-14) at time t.
Warning: RelTol has been increased to 2.22045e-14.
The code is below.
clear all;clc;
op=odeset('relTol',1e-14,'absTol',1e-14);
global psi D B H M epsilon N
epsilon=0.01;
M=epsilon*1;
H=epsilon*1;
psi=5;
D=epsilon*1;
B=epsilon*0.5;
N=epsilon*0.17;
w= 0.1:0.01:5;
for i=1:1:length(w)
THETA=w(i);
[t,y]=ode23s(@(t,x)F(t,x,THETA),[0 20],[0 0],op);
end
function dy = F(t,y,THETA)
global psi D B H M N
dy(1) = y(2);
dy(2) = psi.*cos(THETA.*t)-(1-M.*sin(THETA.*t)).*y(1)-B.*y(2)-(H.*(cos(THETA.*t))).*((y(1)).^2)-(D.*(sin(THETA.*t))-N)*((y(1))^3);
dy=dy';
end

回答 (2 件)

Sam Chak
Sam Chak 2023 年 4 月 17 日
It appears that the system is inherently unstable for . If you simulate the system for a longer time, then the system will explode. Small value of Θ takes longer to explode.
% op = odeset('relTol', 1e-14, 'absTol', 1e-14);
global psi D B H M epsilon N
epsilon = 0.01;
M = epsilon*1;
H = epsilon*1;
psi = 5;
D = epsilon*1;
B = epsilon*0.5;
N = epsilon*0.17;
w = 0.19:0.001:0.195; % theta 0.198 will stop integrating at around 20 sec
% w = zeros(1, 2); % stable
% w = 0.01:0.001:0.014; % stable
for i = 1:1:length(w)
THETA = w(i);
[t, y] = ode45(@(t,x) F(t, x, THETA), [0 20], [0 0]);
plot(t, y), hold on
end
hold off, grid on, xlabel('t, (sec)')
function dy = F(t, y, THETA)
global psi D B H M N
dy(1) = y(2);
dy(2) = psi*cos(THETA*t) - (1 - M*sin(THETA*t))*y(1) - B*y(2) - H*cos(THETA*t)*y(1)^2 - (D*sin(THETA*t) - N)*y(1)^3;
dy = dy';
end
  1 件のコメント
Sam Chak
Sam Chak 2023 年 4 月 19 日
Just to add something; your nonlinear system is unstable
because the coefficient of the cubic growth term is "POSITIVE". In other words, if y gets large, it rapidly "adds" energy to . On the contrary, if you make , then the system will be stable because it rapidly "dissipates" energy in .
If the following example, the sign of N is switched, and stays within .
Note: I didn't perform rigorous mathematical proof to show that the nonlinear system is stable for . It is just my intuitionistic logic.
global psi D B H M epsilon N
epsilon = 0.01;
M = epsilon*1;
H = epsilon*1;
psi = 5;
D = epsilon*1;
B = epsilon*0.5;
N = - epsilon*0.17; % <--- this coefficient must be negative
w = 0.19:0.001:0.195; % theta 0.198 will stop integrating at around 20 sec
% w = zeros(1, 2); % stable
% w = 0.01:0.001:0.014; % stable
for i = 1:1:length(w)
THETA = w(i);
[t, y] = ode45(@(t,x) F(t, x, THETA), [0 3000], [0 0]);
plot(t, y(:,1)), hold on
end
hold off, grid on, xlabel('t, (sec)'), ylabel('y(t)')
title({'Plot of the solution for $y_{1}(t)$'}, 'interpreter', 'latex', 'fontsize', 16)
idx = find(t>2000);
ymax = y(:,1);
max(ymax(idx))
ans = 5.2387
function dy = F(t, y, THETA)
global psi D B H M N
dy(1) = y(2);
dy(2) = psi*cos(THETA*t) - (1 - M*sin(THETA*t))*y(1) - B*y(2) - H*cos(THETA*t)*y(1)^2 - (D*sin(THETA*t) - N)*y(1)^3;
dy = dy';
end

サインインしてコメントする。


Oguz Kaan Hancioglu
Oguz Kaan Hancioglu 2023 年 4 月 17 日
I think matlab solver couldn't solve the nonlinear probrem within your tolerances. You can use fixed step size which is very small dt values (e-5, or e-6) to solve your problem.

カテゴリ

Help Center および File ExchangeOrdinary Differential Equations についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by