Problen with optimization of two parameters, and with differential equations

1 回表示 (過去 30 日間)
Jorge Armando Vazquez
Jorge Armando Vazquez 2023 年 4 月 17 日
編集済み: Torsten 2023 年 4 月 17 日
I made this program for a chemistry class, but for some reason it shows that the objective function enters optimal values but there really isn't a good similarity between the real data and the optimized data, I don't know if it's a problem of how I wrote the optimizer or because of the resolution of differentials
the data is:
0 0
60 0.28
120 0.36
180 0.42
240 0.44
300 0.445
360 0.47
420 0.5
clc
clear all
%Valores iniciales de parametros
par0 = [690,30 ];
data = load('acido.txt');
%Entrada de prueba de presion
fun_objetivo = @(par)FunObjetivo(par,data(:,:));
t = data(:,1);
xe= data(:,2);
%Argumentos de entrada
A =[]; b =[];
Aeq =[]; beq =[];
lb =[500 0]; ub =[1000 100];
IntCon =[]; nonlcon =[];
nvar =2;
%Nelder_Mead
options = optimset('MaxIter',5000,'MaxFunEvals',...
3000,'FunValCheck','off','Display','iter');
%We use here the Nelder-Mead method
par_optimos = fminsearchbnd(fun_objetivo,par0,lb,ub, options);
function FO =FunObjetivo(par,data)
%Vector tiempo
t = data(:,1);
%Vector conversion real
xe = data(:,2);
%Constantes
cc=0.365851537;
ca0=7.718472259;
keq=3.6021;
T=323.15;
k0=par(1);
Ea=par(2);
%Simulation
y0=0;
dxadt=@(t,xa) k0*exp(-Ea/(8310*T))*cc*ca0*((1-xa^2)-((xa^2)/keq));
tspan=[0:60:420];
[t,xa]=ode45(dxadt,tspan,y0);
%Valor de la Funcion Objetivo
FO = sum((xe-xa).^2);
end

回答 (2 件)

Torsten
Torsten 2023 年 4 月 17 日
移動済み: Torsten 2023 年 4 月 17 日
The parameters you want to fit are not independent.
Since T remains constant, the complete expression
k0*exp(-Ea/(8310*T))*cc*ca0
can be merged to one parameter to be fitted.
  3 件のコメント
Torsten
Torsten 2023 年 4 月 17 日
編集済み: Torsten 2023 年 4 月 17 日
No. They cannot be estimated independently if T does not change during your integration.
Jorge Armando Vazquez
Jorge Armando Vazquez 2023 年 4 月 17 日
Ok I change it, but the problem remains, maybe is other thing?
clc
clear all
%Valores iniciales de parametros
par0 = [0.0008];
data = load('acido.txt');
%Entrada de prueba de presion
fun_objetivo = @(par)FunObjetivo(par,data(:,:));
t = data(:,1);
xe= data(:,2);
%Argumentos de entrada
A =[]; b =[];
Aeq =[]; beq =[];
lb =[0]; ub =[1];
IntCon =[]; nonlcon =[];
nvar =1;
%Nelder_Mead
options = optimset('MaxIter',5000,'MaxFunEvals',...
3000,'FunValCheck','off','Display','iter');
%We use here the Nelder-Mead method
par_optimos = fminsearchbnd(fun_objetivo,par0,lb,ub, options);
function FO =FunObjetivo(par,data)
%Vector tiempo
t = data(:,1);
%Vector conversion real
xe = data(:,2);
%Constantes
cc=0.365851537;
ca0=7.718472259;
keq=3.6021;
Te=323.15;
k1=par(1);
%Simulation
y0=0;
dxadt=@(t,xa) k1*cc*ca0*((1-xa^2)-((xa^2)/keq));
%dxadt=@(t,xa) k0*exp(-Ea/(8310*Te))*cc*ca0*((1-xa^2)-((xa^2)/keq));
tspan=[0:60:420];
[t,xa]=ode45(dxadt,tspan,y0);
%Valor de la Funcion Objetivo
FO = sum((xe-xa).^2);
end

サインインしてコメントする。


Torsten
Torsten 2023 年 4 月 17 日
編集済み: Torsten 2023 年 4 月 17 日
All curves that stem from your model tend to sqrt(keq/(1+keq)). Since your measurement data tend to 0.5, my guess is that you have to choose keq such that 0.5 = sqrt(keq/(1+keq)) to get a proper fit. The constant you try to fit gives the velocity with which this equilibrium value of 0.5 is reached.
syms c t keq xa(t)
eqn = diff(xa,t)==c*((1-xa^2)-xa^2/keq);
cond = xa(0)==0;
sol = dsolve(eqn,cond)
sol = 
keqnum = double(solve(sqrt(keq/(keq+1))==0.5,keq))
keqnum = 0.3333
%keqnum=3.6021;
sol = matlabFunction(subs(sol,keq,keqnum));
data=[0 0
60 0.28
120 0.36
180 0.42
240 0.44
300 0.445
360 0.47
420 0.5];
t = data(:,1);
xe = data(:,2);
c = 0:0.001:0.01;
hold on
plot(t,xe,'o')
for i = 1:numel(c)
xa = sol(c(i),t);
plot(t,xa)
end
hold off

カテゴリ

Help Center および File ExchangeQuadratic Programming and Cone Programming についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by