Insert symbolic equation in another symbolic equation

2 ビュー (過去 30 日間)
Mirko Rizzi
Mirko Rizzi 2023 年 4 月 17 日
コメント済み: Mirko Rizzi 2023 年 4 月 17 日
Hello i have the equation eq5 that has been solved and is now only a function of y. I want now to insert this function (r) inside eq6 and solve that, but it gives me an error. How can i solve this?
eq5 = hw2*(q-r)==y;
r = solve(eq5,r);
eq6 = @(y) sigma*eps*((r^4)-T_inf^4)-y;
y0=0;
sol = fsolve(eq6,y0);
  8 件のコメント
Mirko Rizzi
Mirko Rizzi 2023 年 4 月 17 日
編集済み: Mirko Rizzi 2023 年 4 月 17 日
if i use this:
% eq6 = sigma*eps*((r^4)-T_inf^4)==y;
% sol = solve(eq6,y)
it gives me a vector of 4 same elements:
root(z^4 - (148549786974450477987*z^3)/27487790694400 + (66201117630463850684060566839278314716507*z^2)/6044629098073145873530880000 - (25694677813792110401306682574502596589303194435085805665710978025618652510443*z)/2420199345095688424498763567867944239211734959652864000000 + 3804255296569717375581777916032849021112749976946199317897911767146631227587687/1141798154164767904846628775559596109106197299200000000, z, 1)
root(z^4 - (148549786974450477987*z^3)/27487790694400 + (66201117630463850684060566839278314716507*z^2)/6044629098073145873530880000 - (25694677813792110401306682574502596589303194435085805665710978025618652510443*z)/2420199345095688424498763567867944239211734959652864000000 + 3804255296569717375581777916032849021112749976946199317897911767146631227587687/1141798154164767904846628775559596109106197299200000000, z, 2)
root(z^4 - (148549786974450477987*z^3)/27487790694400 + (66201117630463850684060566839278314716507*z^2)/6044629098073145873530880000 - (25694677813792110401306682574502596589303194435085805665710978025618652510443*z)/2420199345095688424498763567867944239211734959652864000000 + 3804255296569717375581777916032849021112749976946199317897911767146631227587687/1141798154164767904846628775559596109106197299200000000, z, 3)
root(z^4 - (148549786974450477987*z^3)/27487790694400 + (66201117630463850684060566839278314716507*z^2)/6044629098073145873530880000 - (25694677813792110401306682574502596589303194435085805665710978025618652510443*z)/2420199345095688424498763567867944239211734959652864000000 + 3804255296569717375581777916032849021112749976946199317897911767146631227587687/1141798154164767904846628775559596109106197299200000000, z, 4)
Mirko Rizzi
Mirko Rizzi 2023 年 4 月 17 日
if i view the entire function r, copy what it is written and substitute it inside works fine, but as it is in the cycle i can't copy and paste manually at every passage

サインインしてコメントする。

採用された回答

Dyuman Joshi
Dyuman Joshi 2023 年 4 月 17 日
編集済み: Dyuman Joshi 2023 年 4 月 17 日
Use vpa to get numerical values. Convert them to double() if you need the values to be in numeric data type.
syms z
%first root, copied from above
sol1=vpa(root(z^4 - (148549786974450477987*z^3)/27487790694400 + (66201117630463850684060566839278314716507*z^2)/6044629098073145873530880000 - (25694677813792110401306682574502596589303194435085805665710978025618652510443*z)/2420199345095688424498763567867944239211734959652864000000 + 3804255296569717375581777916032849021112749976946199317897911767146631227587687/1141798154164767904846628775559596109106197299200000000, z, 1))
sol1 = 
549277.87721495737433337758873113
double(sol1)
ans = 5.4928e+05
  3 件のコメント
Dyuman Joshi
Dyuman Joshi 2023 年 4 月 17 日
They look same because the syntax of the output above is same except for the number of root.
Since solve() was unable to find the explicit value, it returns the solution as -
root(equation,variable,1)
root(equation,variable,2)
root(equation,variable,3)
root(equation,variable,4)
You can see at the end of the each expression there's a number, denoting which root it refers to. The value of roots will, of course, depend upon the coefficients.s
Mirko Rizzi
Mirko Rizzi 2023 年 4 月 17 日
thanks for explaining me!

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeSymbolic Math Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by