I have modified some things and the result is 1 0 -1 which are the initial values, so I don´t know why it does not actualize.
Detecting an error in Muller method.
4 ビュー (過去 30 日間)
古いコメントを表示
Hi! I am programming Muller method as I wan to find the complex roots of an ecuation.
However, it does not work properly and I cannot detect why.
If someone could help me, I would really appreciate it.
Thanks in advance.
Here is the code:
%Muller, mejora del método de la secante, nos permite sacar tanto reales
%como complejas.
f = @(x) x.^3 + 2*x.^2 + 10*x -20;
x0 = -1;
x1 = 0;
x2 = 1;
eps_x = 10e-10;
eps_f = 10e-10;
maxits = 100;
[x0,x1,x2,n,error] = muller(f,x0,x1,x2,eps_x, eps_f,maxits)
function [x0,x1,x2, n, error] = muller(f, x0, x1, x2, eps_x, eps_f, maxits)
x0 = -1;
x1 = 0;
x2 = 1;
n = 0;
error(1) = eps_x + 1;
while n < maxits && (error(n+1) > eps_x || abs(f(x0)) > eps_f)
c = f(x2);
b = ((x0 - x2)^2*(f(x1)-f(x2))-(x1-x2)^2*(f(x0)-f(x2)))/((x0-x2)*(x1-x2)*(x0-x1));
a = ((x1-x2)*(f(x0)-f(x2))-(x0-x2)*(f(x1)-f(x2)))/((x0-x2)*(x1-x2)*(x0-x1));
x3 = x2 - (2*c)/(b+sign(b)*sqrt(b*b-4*a*c));
x0 = x1;
x1 = x2;
x2 = x3;
n = n+1;
error(n+1) = abs(x2-x1);
end
fprintf ('Las raíces son %.6f %.6f %.6f', x0, x1,x2)
end
採用された回答
Torsten
2023 年 4 月 7 日
The argument of the root in the calculation of x2 must become negative.
Or simply start with complex values for x1,x2 and/or x3, e.g.
x0 = -1;
x1 = 0;
x2 = 3*1i;
4 件のコメント
Torsten
2023 年 4 月 7 日
In numerical computations, you will never automatically get complex numbers if you don't start with complex numbers and if there are no expressions that can generate complex numbers (like the sqrt here).
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Splines についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!