argmin function for communication system

11 ビュー (過去 30 日間)
Jose Iglesias
Jose Iglesias 2023 年 4 月 6 日
編集済み: Torsten 2023 年 4 月 6 日
I can use assistance implementing a minimum distance decoder with Matlab to estimate the transmitted symbol as from the computed received signal which is y = h * x + w. The decoder estimates the transmitted symbol as . So, this is where the function attains its minimal value, which in this case is the minimum distance of the transmitted symbol. I am not certain how to implement this into Matlab. I included my current Matlab code shown below which creates 1e4 independent realizations each of h, x, and w for the input-output model y = h · x + w, and so what I need assistance with is the Matlab code for the 1e4 realizations of the decoder. I did find an argmin function from the Mathworks forum which I included at the very bottom of my Matlab code and ran it and I get a result but I am not certain if this is correct. Any assistance is greatly appreciated. Thank you in advance!
% random transmitted symbol x generations
N = 1e4;
c_vals = [-2-2*1i, -2+2*1i, 2-2*1i,2+2*1i];
idx = randi(4,N,1);
x = c_vals(idx)'
% channel h generations
N = 1e4
h = 1/sqrt(2) * (randn(N,1) + 1i*randn(N,1))
mean(h)
var(h)
% noise generations
numRealizations = 1e4; % number of independent realizations
sigma2_w = 0.1; % noise variance
w = sqrt(sigma2_w/2)*(randn(numRealizations, 1) + 1j*randn(numRealizations, 1))
y = h.*x + w
X = argmin(abs(y-h.*x).^2)
function [I,M]=argmin(varargin)
[M,I] = min(varargin{:});
end
  4 件のコメント
Torsten
Torsten 2023 年 4 月 6 日
編集済み: Torsten 2023 年 4 月 6 日
I am assuming if x had real and imaginary components, the xhat formula which takes the absolute value and squares it only accounts for the real part.
No. It's the norm squared of a complex vector, namely y = h*x + w. The norm is defined as ||y||^2 = y'*y where y' is the conjugate transpose of y.
My guess is that your problem is solved by x = h\(y-w).
At least for all variables being real,
xhat = A\b
minimizes ||A*x-b|| in the 2-norm.
Jose Iglesias
Jose Iglesias 2023 年 4 月 6 日
Thanks. I will try your method.

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeQAM についてさらに検索

製品


リリース

R2023a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by