how to find equlibrium point of 5 non linear system with numerical method
8 ビュー (過去 30 日間)
古いコメントを表示
I have a system of 5 non linear ordinary differential equations with variable coefficients . I am trying to find the equilibrium points by hand but it seems like it is not possible without the help of a numerical method. What would be a good method to calculate equilibrium points of the system?
Another question (somehow related to the problem above): Would it be possible to check the stability of the equilibrium points and then draw a bifurcation diagram? If so, please suggest some way out!
e1 = 13;
g = 0.0125;
h = 0.284253;
f = 0.05;
q1 = 0;
k1 = 10;
d1 = 0.0412;
e2 = 0.0188;
j = 0.0082;
q2 = 0;
k2 = 10;
d2 = 0.0288;
b = 2;
d4 = 0.1152;
e3 = 0.166667;
a = 1.7;
q3 = 0;
k3 = 10;
d3 = 0.1152;
r = 0.5;
m = 1.02;
q4 = 0;
k4 = 10;
dydt(1) = e1 + (g*y(3)*y(1)/(h + y(3))) + (f*y(3)*y(1)) - (y(1)*(1 + ((q1/k1)*y(1)))) - (d1*y(1));
dydt(2) = e2*y(2) + (f*y(1)*y(3)) - (j*y(2)) - (y(2)*(1 + ((q2/k2)*y(2)))) - (d2*y(2));
dydt(3) = (b*e2*y(2)) - (d4*y(3));
dydt(4) = e3*y(4) + (j*y(2)) - (a*y(4)) - (y(4)*(1 + ((q3/k3)*y(4)))) - (d3*y(4));
dydt(5) = (r*y(5)*(1 - (m*y(5)))) + (a*y(4)) - y(5)*(1 + ((q4/k4)*y(5)));
0 件のコメント
採用された回答
Torsten
2023 年 4 月 2 日
I don't know if the result is as expected.
format long
yequi = fsolve(@fun,rand(5,1))
fun(yequi)
function dydt = fun(y)
e1 = 13;
g = 0.0125;
h = 0.284253;
f = 0.05;
q1 = 0;
k1 = 10;
d1 = 0.0412;
e2 = 0.0188;
j = 0.0082;
q2 = 0;
k2 = 10;
d2 = 0.0288;
b = 2;
d4 = 0.1152;
e3 = 0.166667;
a = 1.7;
q3 = 0;
k3 = 10;
d3 = 0.1152;
r = 0.5;
m = 1.02;
q4 = 0;
k4 = 10;
dydt(1) = e1 + (g*y(3)*y(1)/(h + y(3))) + (f*y(3)*y(1)) - (y(1)*(1 + ((q1/k1)*y(1)))) - (d1*y(1));
dydt(2) = e2*y(2) + (f*y(1)*y(3)) - (j*y(2)) - (y(2)*(1 + ((q2/k2)*y(2)))) - (d2*y(2));
dydt(3) = (b*e2*y(2)) - (d4*y(3));
dydt(4) = e3*y(4) + (j*y(2)) - (a*y(4)) - (y(4)*(1 + ((q3/k3)*y(4)))) - (d3*y(4));
dydt(5) = (r*y(5)*(1 - (m*y(5)))) + (a*y(4)) - y(5)*(1 + ((q4/k4)*y(5)));
end
4 件のコメント
Torsten
2023 年 4 月 2 日
Is it possible for the equilibrium point to be negative?
It's the numerical error in the equation fun(yequi) that is negative, not the solution itself (yequi) (if this is what you mean with your question).
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Symbolic Math Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!