How can I plot a second order differential equation with boundary condition using fourth order Runge-Kutta method?

22 ビュー (過去 30 日間)
%%%%%%%%%%%%%%%% Runga-Kutta%%%%%%%%%%%%%%%%
h=0.0001;
xfinal=d;
x(1)=0;
y(1)=0; % initial value of y
y(xfinal)=0; % final value of y
% Let y' = z (f1) and y" = z' (f2);
f1 = @(x, y, z) z;
f2 = @(x, y, z) ky^2*y-(ky*(-2*W*(pi/d)*tan(2*pi*x/d)+2*u0*((pi/d)^2)*cos(2*pi*x/d))*y)/(OP3-ky*u0*(sin(pi*x/d).^2-1/2)+...
B*(OP3-ky*u0*(sin(pi*x/d).^2-1/2)-A*(-2*W*(pi/d)*tan(2*pi*x/d)+2*u0*((pi/d)^2)*cos(2*pi*x/d)-ky*(OP3-ky*u0*(sin(pi*x/d).^2-1/2))))*(1-...
M*(opi^2)/(M*OP3^2-gi*Ti*ky^2)));
for i=1:ceil(xfinal/h)
x(i+1)=x(i)+h;
K1y = f1(x(i), y(i), z(i));
K1z = f2(x(i), y(i), z(i));
K2y = f1(x(i)+0.5*h, y(i)+0.5*K1y*h, z(i)+0.5*K1z*h);
K2z = f2(x(i)+0.5*h, y(i)+0.5*K1y*h, z(i)+0.5*K1z*h);
K3y = f1(x(i)+0.5*h, y(i)+0.5*K2y*h, z(i)+0.5*K2z*h);
K3z = f2(x(i)+0.5*h, y(i)+0.5*K2y*h, z(i)+0.5*K2z*h);
K4y = f1(x(i)+h, y(i)+K3y*h, z(i)+K3z*h);
K4z = f2(x(i)+h, y(i)+K3y*h, z(i)+K3z*h);
y(i+1) = y(i)+(K1y+2*K2y+2*K3y+K4y)*h/6;
z(i+1) = z(i)+(K1z+2*K2z+2*K3z+K4z)*h/6;
end
plot(x,y,'-','linewidth',1)
hold on
  1 件のコメント
John D'Errico
John D'Errico 2023 年 3 月 17 日
It looks like you already solved the ODE, and plotted it. Where is the problem? (Even so, if this were not homework, as it surely is, you should be using an ODE solver, not writing your own code.)

サインインしてコメントする。

回答 (1 件)

Cameron
Cameron 2023 年 3 月 17 日
Here is a list of built-in ODE solvers within MATLAB.

カテゴリ

Help Center および File ExchangeOrdinary Differential Equations についてさらに検索

製品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by