Solve non linear m equations in n unknows with m,n

2 ビュー (過去 30 日間)
Giuseppe Avallone
Giuseppe Avallone 2023 年 3 月 14 日
コメント済み: Giuseppe Avallone 2023 年 3 月 14 日
Hy anyone,
I have to find 3 unknows k(1),k(2),k(3) for 9 non-linear equations. Maybe it's better to define this an optimization problem.
I know three nominal values of the unknowns, and if needed I could try to define a range around these nominal values k0.
F = @(k) [4357202.836588509231357947142360134250944*k(1) + 9859271.851176796611675995847715914277865*k(2) + 12592776.99754481905498970954517604707339*k(3) - 20.51859923348048473398668989105882860955*k(1)*k(2) - 135.0095116969981247839644165367430620599*k(1)*k(3) - 224.418415685580282325042228673779142726*k(2)*k(3) + 0.0001974038864112137491709680455099275622648*k(1)*k(2)*k(3) - 386025229299.9568622662995264786719011713 ;
1286149.80914724430143242256559904173928*k(1) + 2910123.182185286538510348586301262416866*k(2) + 2457765.768214964601468842428661712021226*k(3) - 9.979230585365292560599694975564174587835*k(1)*k(2) - 43.09982147759781641104881096543829123567*k(1)*k(3) - 65.27620037797945725044359667927450708008*k(2)*k(3) + 0.00006792607212029985031909708221116361537827*k(1)*k(2)*k(3) - 67420190839.84246007677646398928979376589 ;
1291805.705153364176489841145279987563561*k(1) + 2952984.164173089873787405350927883253236*k(2) + 2488522.02733906362837134689575136170105*k(3) - 10.00213358127286743093338940391172830115*k(1)*k(2) - 43.18942706666197475326431587285044438606*k(1)*k(3) - 65.22912805800736162093930913666144406004*k(2)*k(3) + 0.00006800109075884199872551625872697606227797*k(1)*k(2)*k(3) - 67661033001.60213888043923408164910427652 ;
12607759.95501730560066220761139765541052*k(1) + 26107099.62399446518954185057851482359657*k(2) + 12260288.70589727224842731242100434358285*k(3) - 22.69101222596863008864367035207016160712*k(1)*k(2) - 95.22704935962102682612616817269934116956*k(1)*k(3) - 189.138544525870320685548774619114313263*k(2)*k(3) + 0.0001354239064903012104673850380188781482234*k(1)*k(2)*k(3) - 1617019494158.855188411491058498370659906 ;
3748563.849785500307764636868502067998803*k(1) + 7519193.935007966250602037219051168242994*k(2) + 1920762.425468395419190980660961727263255*k(3) - 10.00195708400526165569539946926743327835*k(1)*k(2) - 25.95996227527224374564055763401515220669*k(1)*k(3) - 46.9993740449578883455888632500556953974*k(2)*k(3) + 0.00004292805192481937357291378153289530770884*k(1)*k(2)*k(3) - 268930294963.1287649791083387067703578281 ;
3560167.022800402172529857336016080641268*k(1) + 7095588.500283814732810917180124881872391*k(2) + 1872107.345499261379514804556669792996733*k(3) - 9.746391301799269655619403707441356123279*k(1)*k(2) - 25.98899847891971378456065249962057858545*k(1)*k(3) - 46.71325371351432635875183712080604274365*k(2)*k(3) + 0.00004289814329802416986725607787863446922266*k(1)*k(2)*k(3) - 249358601643.2416914446620002210835035023;
3988762.27490288425887479384394653453603*k(1) + 8738461.159895929076620546905704970803657*k(2) + 13368646.02473437900857649140017905564475*k(3) - 18.15434755110089728695928379362075027531*k(1)*k(2) - 119.4530664672458477131331425063832791194*k(1)*k(3) - 186.1280821229015574286430386345502689368*k(2)*k(3) + 0.0001688072891012624325953548233012356174784*k(1)*k(2)*k(3) - 427570770360.0065326896147536792317001875 ;
1116806.028299326940326556323008098748303*k(1) + 2410432.013581268638399095955292097454772*k(2) + 2460478.259635752703845834063021936376325*k(3) - 8.508752280537139811312068491475302077003*k(1)*k(2) - 36.74889573411236784198106191846789795424*k(1)*k(3) - 52.75237699668644488968923879393588483896*k(2)*k(3) + 0.0000568706188905800444434832754790718433858*k(1)*k(2)*k(3) - 71210180483.80869174347140705351621299913 ;
1112882.251030959336077685981922307508417*k(1) + 2369803.075724879582821621219200347951115*k(2) + 2429550.257798150438894801256125548799455*k(3) - 8.481450605212287042087645383422755941522*k(1)*k(2) - 36.62308540041477474937317212786907166854*k(1)*k(3) - 52.76878192360401510871042697865803726479*k(2)*k(3) + 0.00005675692195390562699333325622768362584587*k(1)*k(2)*k(3) - 70951603858.72984077079782867429825559985];
k0 = [5.1920e+06,8.2376e+05,4.0222e+05];
Do you have any ideas? Thanks.

採用された回答

Torsten
Torsten 2023 年 3 月 14 日
k = lsqnonlin(F,k0)
  1 件のコメント
Giuseppe Avallone
Giuseppe Avallone 2023 年 3 月 14 日
This is already a good suggestion. Thank you very much

サインインしてコメントする。

その他の回答 (0 件)

製品


リリース

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by