How to fix this error : Not enough input arguments.
    4 ビュー (過去 30 日間)
  
       古いコメントを表示
    
Hi Everyone, i am an Egnineering student new to MATLAB Coding and working on Coding arithmetic optimization Algorathim (AOA). 
I keep Having this Erorr : Not enough input arguments.
Error in AOA_new6 (line 5)
Best_P=zeros(1,Dim);
i am trying to modifi the code for global optimization. 
i added the code for refrence. 
it's not my work. 
function [Best_FF,Best_P,Conv_curve]=AOA_new6(N,M_Iter,LB,UB,Dim,fhd,Function_ID,Global_Opt)
disp('AOA Working');
%Two variables to keep the positions and the fitness value of the best-obtained solution
Best_P=zeros(1,Dim);
Best_FF=inf;
Conv_curve=zeros(1,M_Iter);
%Initialize the positions of solution
X=initialization(N,Dim,UB,LB);
Xnew=X;
Ffun=zeros(1,size(X,1));% (fitness values)
Ffun_new=zeros(1,size(Xnew,1));% (fitness values)
MOP_Max=1;
MOP_Min=0.2;
C_Iter=1;
Alpha=5;
Mu=0.499;
for i=1:size(X,1)
    %Ffun(1,i)=F_obj(X(i,:));  %Calculate the fitness values of solutions
    Ffun(1,i)=feval(fhd,X(i,:)',Function_ID);  %Calculate the fitness values of solutions
    if Ffun(1,i)<Best_FF
        Best_FF=Ffun(1,i);
        Best_P=X(i,:);
    end
end
while C_Iter<M_Iter+1  %Main loop
    MOP=1-((C_Iter)^(1/Alpha)/(M_Iter)^(1/Alpha));   % Probability Ratio 
    MOA=MOP_Min+C_Iter*((MOP_Max-MOP_Min)/M_Iter); %Accelerated function
    %Update the Position of solutions
    for i=1:size(X,1)   % if each of the UB and LB has a just value 
        for j=1:size(X,2)
           r1=rand();
            if (size(LB,2)==1)
                if r1<MOA
                    r2=rand();
                    if r2>0.5
                        Xnew(i,j)=Best_P(1,j)/(MOP+eps)*((UB-LB)*Mu+LB);
                    else
                        Xnew(i,j)=Best_P(1,j)*MOP*((UB-LB)*Mu+LB);
                    end
                else
                    r3=rand();
                    if r3>0.5
                        Xnew(i,j)=Best_P(1,j)-MOP*((UB-LB)*Mu+LB);
                    else
                        Xnew(i,j)=Best_P(1,j)+MOP*((UB-LB)*Mu+LB);
                    end
                end               
            end
            if (size(LB,2)~=1)   % if each of the UB and LB has more than one value 
                r1=rand();
                if r1<MOA
                    r2=rand();
                    if r2>0.5
                        Xnew(i,j)=Best_P(1,j)/(MOP+eps)*((UB(j)-LB(j))*Mu+LB(j));
                    else
                        Xnew(i,j)=Best_P(1,j)*MOP*((UB(j)-LB(j))*Mu+LB(j));
                    end
                else
                    r3=rand();
                    if r3>0.5
                        Xnew(i,j)=Best_P(1,j)-MOP*((UB(j)-LB(j))*Mu+LB(j));
                    else
                        Xnew(i,j)=Best_P(1,j)+MOP*((UB(j)-LB(j))*Mu+LB(j));
                    end
                end               
            end
        end
        Flag_UB=Xnew(i,:)>UB; % check if they exceed (up) the boundaries
        Flag_LB=Xnew(i,:)<LB; % check if they exceed (down) the boundaries
        Xnew(i,:)=(Xnew(i,:).*(~(Flag_UB+Flag_LB)))+UB.*Flag_UB+LB.*Flag_LB;
        %Ffun_new(1,i)=F_obj(Xnew(i,:));  % calculate Fitness function 
        Ffun_new(1,i)=feval(fhd,Xnew(i,:)',Function_ID);  %Calculate the fitness values of solutions
        if Ffun_new(1,i)<Ffun(1,i)
            X(i,:)=Xnew(i,:);
            Ffun(1,i)=Ffun_new(1,i);
        end
        if Ffun(1,i)<Best_FF
        Best_FF=Ffun(1,i);
        Best_P=X(i,:);
        end
    end
    %Update the convergence curve
    Conv_curve(C_Iter)=Best_FF-Global_Opt;
    %Print the best solution details after every 50 iterations
    if mod(C_Iter,50)==0
        display(['At iteration ', num2str(C_Iter), ' the best solution fitness is ', num2str(Best_FF-Global_Opt)]);
    end
    C_Iter=C_Iter+1;  % incremental iteration
end
回答 (1 件)
  Constantino Carlos Reyes-Aldasoro
      
 2023 年 3 月 7 日
        Hello
Most probably you are not calling the function with all the necessary input parameters, look at this example in which there are 3 parameters required and I only pass 2.
test(2,3)
function out = test(a,b,c)
out = a*b*c;
end
8 件のコメント
  Image Analyst
      
      
 2023 年 3 月 20 日
				We assume you got it working because you accepted this answer.  It that's not true, then unaccept it and maybe more people will answer.
参考
カテゴリ
				Help Center および File Exchange で Surrogate Optimization についてさらに検索
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!



