REQUIRE CODE FOR AKAIKE INFORMATION CRITERIA (AIC) VALUE FOR ESTIMATED MODEL

22 ビュー (過去 30 日間)
SWAPNAVA
SWAPNAVA 2023 年 2 月 20 日
回答済み: Atharva 2023 年 3 月 29 日
I need to calculate Akaike Information Criterion value for my model. I need the code.

採用された回答

Atharva
Atharva 2023 年 3 月 29 日
The Akaike Information Criterion (AIC) value can be calculated using the log-likelihood function and the number of parameters in the model. Here is an example-
% assume that we have a vector of observed data 'y', and a vector of predicted data 'y_pred'
% calculate the log-likelihood function for the model
n = length(y);
sigma2 = var(y-y_pred);
logLikelihood = -0.5*n*log(2*pi) - 0.5*n*log(sigma2) - (1/(2*sigma2))*sum((y-y_pred).^2);
% calculate the number of parameters in the model
numParams = ; % insert the number of parameters in your model here
% calculate the AIC value
AIC = -2*logLikelihood + 2*numParams;

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeMultivariate Models についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by