I am facing error while solving two 2nd order differential equation in which boundary condition are dependent to each other. Any idea where I am doing wrong??

1 回表示 (過去 30 日間)
clc
clear all;
close all;
syms psi_1(z)
syms psi_2(z)
K1=1
K2=1
K3=1
Dpsi_1 = diff(psi_1);
Dpsi_2 = diff(psi_2);
%%%%%%%%%% Differential equations %%%%%%%%%%%%%
ode1=diff(psi_1,z,2)-psi_1/K1==K2
ode2 = diff(psi_2,z,2)==K3
%%%%%%%%%% initial conditions %%%%%%%%
cond1 = psi_1(0) == 0;
cond2=psi_1(1)==psi_2(1)
cond3 = Dpsi_1(1) == Dpsi_2(1);
cond4=psi_2(2) == 0.5;
conds_1 = [cond1 cond2];
conds_2 = [cond3 cond4];
psi_1Sol(z) = dsolve(ode1,conds_1)
psi_2Sol(z) = dsolve(ode2,conds_2)

採用された回答

Oguz Kaan Hancioglu
Oguz Kaan Hancioglu 2023 年 2 月 17 日
Since boundary conditions are related to each variable, solving all odes in one dsolve command may solve your problem.
[psi_1Sol(z), psi_2Sol(z)] = dsolve(ode1,ode2,conds_1,conds_2)

その他の回答 (1 件)

Torsten
Torsten 2023 年 2 月 17 日
編集済み: Torsten 2023 年 2 月 17 日
syms y1(z) y2(z) z C11 C12 C21 C22
K1 = 1;
K2 = 1;
K3 = 1;
eqn1 = diff(y1,z,2) - y1/K1 == K2;
eqn2 = diff(y2,z,2) == K3;
sol1 = dsolve(eqn1);
var1 = symvar(sol1);
sol1 = subs(sol1,[var1(1),var1(2)],[C11 C12]);
sol2 = dsolve(eqn2);
var2 = symvar(sol2);
sol2 = subs(sol2,[var2(1) var2(2)],[C21 C22]);
eqn1_alg = subs(sol1,z,0)==0;
eqn2_alg = subs(diff(sol1,z),z,1)==subs(diff(sol2,z),z,1);
eqn3_alg = subs(sol1,z,1)==subs(sol2,z,1);
eqn4_alg = subs(sol2,z,2)==0.5;
sol_alg = solve([eqn1_alg,eqn2_alg,eqn3_alg,eqn4_alg],[C11 C12 C21 C22]);
sol1 = subs(sol1,[C11 C12],[sol_alg.C11 sol_alg.C12]);
sol2 = subs(sol2,[C21 C22],[sol_alg.C21 sol_alg.C22]);
figure(1)
hold on
fplot(sol1,[0 1])
fplot(sol2,[1 2])
hold off
grid on
@Oguz Kaan Hancioglu suggestion works, too:
syms psi_1(z)
syms psi_2(z)
K1=1;
K2=1;
K3=1;
Dpsi_1 = diff(psi_1);
Dpsi_2 = diff(psi_2);
%%%%%%%%%% Differential equations %%%%%%%%%%%%%
ode1=diff(psi_1,z,2)-psi_1/K1==K2;
ode2 = diff(psi_2,z,2)==K3;
%%%%%%%%%% initial conditions %%%%%%%%
cond1 = psi_1(0) == 0;
cond2=psi_1(1)==psi_2(1);
cond3 = Dpsi_1(1) == Dpsi_2(1);
cond4=psi_2(2) == 0.5;
conds_1 = [cond1 cond2];
conds_2 = [cond3 cond4];
[psi_1Sol(z), psi_2Sol(z)] = dsolve(ode1,ode2,conds_1,conds_2);
figure(2)
hold on
fplot(psi_1Sol,[0 1])
fplot(psi_2Sol,[1 2])
hold off
grid on
  1 件のコメント
Amit kumar
Amit kumar 2023 年 2 月 21 日
Thank you for your response. By looking at your code, I learned another way to solve this kind of problem.

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeSymbolic Math Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by