Having trouble solving two second order ODEs simultaneously

1 回表示 (過去 30 日間)
Shishir Raut
Shishir Raut 2023 年 2 月 14 日
コメント済み: Shishir Raut 2023 年 2 月 16 日
I am trying to solve Keller Miksis equation for a double bubble system but I am having trouble breaking down the equation into two first order ODEs or solving these two equations simulatenously.
For ease, I am omitting the terms containing (dPsi/dt) and (dPsj/dt) from both equations.
The code I used is:
syms Ri(t) Rj(t) x(t) DRi(t) DRj(t) Dx(t)
c=350
Psi = 1000
Psj = 1000
Dij = 1e-6
rho = 997
ode1= (1-(1/c)*diff(Ri,t))*Ri*(diff(Ri,t,2))+ 1.5*(1-(1/(3*c))*diff(Ri,t))*((diff(Ri,t))^2) == (1/rho)*(1+(1/c)*diff(Ri,t))*Psi - (1/Dij)*(2*diff(Rj,t)*diff(Rj,t,2)^2+ diff(Rj,t,2)*diff(Rj,t)^2 )
[ode1, var1] = reduceDifferentialOrder(ode1,Ri);
ode2 = (1-(1/c)*diff(Rj,t))*Rj*(diff(Rj,t,2))+ 1.5*(1-(1/(3*c))*diff(Rj,t))*((diff(Rj,t))^2) == (1/rho)*(1+(1/c)*diff(Rj,t))*Psj - (1/Dij)*(2*diff(Ri,t)*diff(Ri,t,2)^2+ diff(Ri,t,2)*diff(Ri,t)^2 )
[ode2, var2] = reduceDifferentialOrder(ode2,Rj);
ode = [ode1; ode2];
var = [var1; var2];
[odes, vars] = odeToVectorField(ode);
ode_fun = matlabFunction(odes, 'Vars',{'t','Y'});
y0 = [0 0];
tspan = [0 5];
[t,y] = ode45(ode_fun,tspan,y0);
plot(t,R)
The error I am getting is:
I would really appreciate if you could help me figure out to solve these simultaenous second order ODEs.

採用された回答

Torsten
Torsten 2023 年 2 月 14 日
According to your equations in the graphics, these terms in the MATLAB code are wrong:
- (1/Dij)*(2*diff(Rj,t)*diff(Rj,t,2)^2+ diff(Rj,t,2)*diff(Rj,t)^2 )
- (1/Dij)*(2*diff(Ri,t)*diff(Ri,t,2)^2+ diff(Ri,t,2)*diff(Ri,t)^2 )
  10 件のコメント
Torsten
Torsten 2023 年 2 月 16 日
編集済み: Torsten 2023 年 2 月 16 日
Maybe better to read.
syms Ri(t) Rj(t) psi(t) psj(t)
c = 1480;
pv = 2338;
p2 = 101325;
rho = 1000 ;
sigmaL = 0.072 ;
muL = 1.005e-3 ;
gamma = 1.4 ;
Dij = 1e-6;
P0 = 101325;
Roi = 100*1e-6;
Roj = 50*1e-6;
tau = 5;
psi = (P0+2*sigmaL/Roi)*(Roi/Ri)^(3*gamma) -2*sigmaL/Ri - 4*muL*diff(Ri,t)/Ri - (pv + ((p2-pv)*t)/tau);
psj = (P0+2*sigmaL/Roj)*(Roj/Rj)^(3*gamma) -2*sigmaL/Rj - 4*muL*diff(Rj,t)/Rj - (pv + ((p2-pv)*t)/tau);
ode1= (1-(1/c)*diff(Ri,t))*Ri*(diff(Ri,t,2))+ 1.5*(1-(1/(3*c))*diff(Ri,t))*((diff(Ri,t))^2) == 1/rho * (psi + 1/c*diff(Ri*psi,t)) - (1/Dij)*(2*Rj*diff(Rj,t)^2 + Rj^2*diff(Rj,t,2) );
ode2 = (1-(1/c)*diff(Rj,t))*Rj*(diff(Rj,t,2))+ 1.5*(1-(1/(3*c))*diff(Rj,t))*((diff(Rj,t))^2) == 1/rho *(psj + 1/c*diff(Rj*psj,t)) - (1/Dij)*(2*Ri*diff(Ri,t)^2 + Ri^2*diff(Ri,t,2) );
ode = [ode1; ode2];
[V,S] = odeToVectorField(ode);
M = matlabFunction(V,'vars',{'t','Y'});
y0 = [Roj 0 Roi 0];
tspan = [0 5];
[t,y] = ode15s(M,tspan,y0);
plot(t,[y(:,1),y(:,3)])
grid on
Shishir Raut
Shishir Raut 2023 年 2 月 16 日
Thank you, I greatly appreciate it!

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeOrdinary Differential Equations についてさらに検索

製品


リリース

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by