Please help me. I want to integrate the following function from 0 to plus infinity.

34 ビュー (過去 30 日間)
El Houssain Sabour
El Houssain Sabour 2023 年 2 月 1 日
編集済み: Torsten 2023 年 2 月 2 日
syms r r0 sg g(r)=r*exp(-(log(r)-log(r0))^2/(2*sg^2));
  6 件のコメント
El Houssain Sabour
El Houssain Sabour 2023 年 2 月 2 日
It's also about the integral, which is in the equation. And that's my problem. I can't implement this with Matlab.
Torsten
Torsten 2023 年 2 月 2 日
編集済み: Torsten 2023 年 2 月 2 日
As you can see under
integral_{r=0}^{r=Inf} r^n * 1/(r*sqrt(2*pi*sigma^2)) * exp(-1/2 * (log(r)-mu)^2 / sigma^2) dr
=
exp( n*mu + 1/2 * n^2*sigma^2)
Both of your two integrals in question follow from this relation for n=2 and n=3.
So your integral becomes
integral_{r=0}^{r=Inf} r^(n-1) * exp(-1/2 * (log(r)-log(r0))^2 / sg^2) dr =
sqrt(2*pi*sg^2) * exp( n*log(r0) + 1/2 * n^2*sg^2)
for n = 2: sqrt(2*pi*sg^2) * r0^2* exp( 2*sg^2)
for n = 3: sqrt(2*pi*sg^2) * r0^3* exp( 4.5*sg^2)

サインインしてコメントする。

回答 (1 件)

Dr. JANAK TRIVEDI
Dr. JANAK TRIVEDI 2023 年 2 月 2 日
編集済み: Torsten 2023 年 2 月 2 日
syms r r0 sg
g(r) = r * exp(-(log(r) - log(r0))^2 / (2 * sg^2));
int_g = int(g,r,0,inf)
int_g = 
Note that the inf keyword represents infinity. The integral of g(r) is calculated over the interval [0,inf). You can also specify other intervals of integration as needed.
  1 件のコメント
Torsten
Torsten 2023 年 2 月 2 日
I don't see that the integral can be calculated by using "int".

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeCalculus についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by