Exponential approximation for vector input

5 ビュー (過去 30 日間)
Eduardo
Eduardo 2023 年 1 月 31 日
コメント済み: Eduardo 2023 年 2 月 1 日
I was double checking the behaviour of a sigmoid function used in my Simulink model and I noticed that I was getting incorrect approximations when I made the computation for a vector of values
vect = [-5.0000 -5.0000 -5.0000 1.0000 0.9000 0.8000 0.7000 -5.0000 -5.0000];
y_vect = 1/(1+exp(-2*(vect'-1)));
% Value calculated using the vector
y_vect(4)
ans = 0
% Value calculated alone
y_val = 1/(1+exp(-2*(vect(4)-1)))
y_val = 0.5000
This approximation in my case causes great confussion due to the magnitude of the quantity expected.
Is there any way to solve this?

採用された回答

Sulaymon Eshkabilov
Sulaymon Eshkabilov 2023 年 1 月 31 日
You have overlooked one dot. Here is the corrected commands:
vect = [-5.0000 -5.0000 -5.0000 1.0000 0.9000 0.8000 0.7000 -5.0000 -5.0000];
y_vect = 1./(1+exp(-2*(vect-1)));
% Value calculated using the vector
y_vect(4)
ans = 0.5000
% Value calculated alone
y_val = 1/(1+exp(-2*(vect(4)-1)))
y_val = 0.5000
  1 件のコメント
Eduardo
Eduardo 2023 年 2 月 1 日
Oh nice to know!
I wrongly thought the broadcasting would be done automatically since we just had a scalar in the numerator

サインインしてコメントする。

その他の回答 (1 件)

Voss
Voss 2023 年 1 月 31 日
vect = [-5.0000 -5.0000 -5.0000 1.0000 0.9000 0.8000 0.7000 -5.0000 -5.0000];
Using / (matrix right division), as you have it now:
y_vect = 1/(1+exp(-2*(vect'-1)));
disp(y_vect)
1.0e-05 * 0.6144 0 0 0 0 0 0 0 0
Using ./ (element-wise right division):
y_vect = 1./(1+exp(-2*(vect'-1)));
disp(y_vect)
0.0000 0.0000 0.0000 0.5000 0.4502 0.4013 0.3543 0.0000 0.0000

カテゴリ

Help Center および File ExchangeMatrix Indexing についてさらに検索

製品


リリース

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by