Sound absorption coefficient of membrane backed with air cavity

1 回表示 (過去 30 日間)
RAJA KUMAR
RAJA KUMAR 2023 年 1 月 17 日
編集済み: RAJA KUMAR 2023 年 7 月 12 日

採用された回答

VBBV
VBBV 2023 年 1 月 17 日
編集済み: VBBV 2023 年 1 月 17 日
clc
clear all;
f= (100:2:1600);
omega= 2*pi*f;
rho_s=0.265;
T=76.53*(1+1j*0.005);
D=0.1;
a=0.05; % Fig 2 a
c=343;
rho_0=1.213;
Z_0 = rho_0*c;
k0=omega/c;
km=omega.*sqrt(rho_s/T);
%% Impedance of membrane with air cavity only
% Z_m = (1j*omega*rho_s)./(1-((2./km*a).*(besselj(1, km*a)./besselj(0,km*a))));
Z_m = (1j*omega*rho_s)./(((besselj(0, km*a)./besselj(2,km*a))));
Z_w = -1j*Z_0*cot(k0*D);
Z_s = Z_m + Z_w;
Z_s = Z_s/Z_0;
R = (Z_s - 1)./(Z_s + 1);
alpha_1 = 1 - ((abs(R)).^2);
figure(1)
set(gca,'FontSize',16)
plot(f,alpha_1); % check using semilogx
%xticklabels(xL)
xlabel('Frequency (Hz)')
ylabel('Sound absorption coefficient')
grid on
grid minor
ylim([0 1])
set(gca, 'XScale', 'log')
The plot was drawn using the below equation
Z_m = (1j*omega*rho_s)./(((besselj(0, km*a)./besselj(2,km*a)))); % Eq (3) where he writes as it
% can also be written as,
and not with equation you used. Convert the log representation of xlabels using xticklabels
  3 件のコメント
RAJA KUMAR
RAJA KUMAR 2023 年 1 月 18 日
First of all sir, I thank you for your valuable comment. I had not used the second equation as it had said that the both the equations are same. I will work on your suggestions and update you.
The paper had said that both equations give the same result but now it can be clearly seen that the both the equations are not even approximately same right ?
VBBV
VBBV 2023 年 1 月 18 日
編集済み: VBBV 2023 年 1 月 18 日
Apparently, the results show that they are different equations, applied for a specific context in their study. if it solved your problem pls accept the answer,

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangePartial Differential Equation Toolbox についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by