Any comment, idea or innovation to calculate this parametric implicit integral?

1 回表示 (過去 30 日間)
Mehdi
Mehdi 2023 年 1 月 14 日
コメント済み: Walter Roberson 2023 年 1 月 15 日
Any comment, idea or innovation to calculate this parametric implicit integral?
Note M, II, JJ are arbitrary positive integers (0<M, II, JJ<11).
F must be a function of Pm at the final!
clear
M = 3;
JJ = 5;
II = 5;
W = rand(II, JJ, M);
V = rand(II, JJ, M);
p = sym('p',[1 M]);
syms x y
w = sym('0');
v = sym('0');
L = sym('0');
for m=1:M
for i=1:II
for j=1:JJ
w =w+W(i, j, m)*legendreP(i-1, x)*legendreP(j-1, y)*p(m);
v =v+V(i, j, m)*legendreP(i-1, x)*legendreP(j-1, y)*p(m);
L = L+(legendreP(i-1, x)*legendreP(j-1, y))^2;
end
end
end
H = 1+tanh(w-v);
F = int(int(H*L,x,[-1 , 1]), y,[-1, 1])
F = 
  7 件のコメント
Mehdi
Mehdi 2023 年 1 月 14 日
編集済み: Mehdi 2023 年 1 月 14 日
i am thiniking to replace 1+tanh(w-v) with other simpler continuous functions which help to solve this integral, since it acts like step function. What do you think?
Approximate solutions are also welcome.
Walter Roberson
Walter Roberson 2023 年 1 月 15 日
I am not clear as to what you are requesting?
The integral does not appear to be implicit, just not closed form.
If you are asking for a way to find a closed form expression for it, then I doubt that is possible.
You can use techniques such as taylor series, but that gets messy quickly and is going to be pretty inaccurate.

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeFormula Manipulation and Simplification についてさらに検索

製品


リリース

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by