'integral' with piecewise expressions

9 ビュー (過去 30 日間)
anto
anto 2023 年 1 月 13 日
コメント済み: anto 2023 年 1 月 15 日
I have the following expression for the angle Beta:
L = 1;
syms y
Beta = piecewise(0<=y<L/2, pi/2, ...
L/2 <=y <L*(3/4),pi/2+0.3491, ...
(3/4)*L <=y <=L,pi/2-0.3491);
i want to compute this integral:
a = pi/4;
fun_f=@(y) (1./(50*(1+y)*(cos(a)*cos(Beta)+sin(a)*sin(Beta))+470));
int= integral(fun_f,0,L)
Error using integralCalc/finalInputChecks
Input function must return 'double' or 'single' values. Found 'sym'.

Error in integralCalc/iterateScalarValued (line 315)
finalInputChecks(x,fx);

Error in integralCalc/vadapt (line 132)
[q,errbnd] = iterateScalarValued(u,tinterval,pathlen);

Error in integralCalc (line 75)
[q,errbnd] = vadapt(@AtoBInvTransform,interval);

Error in integral (line 87)
Q = integralCalc(fun,a,b,opstruct);
Does anybody know how to calculate the integral with using integral, but with Beta defined as a piecewise function?
I looked for documentation for piecewise but I don't really know if it's needed to use it. I'd prefer not to.
If you need further information i'll be happy to provide it in order to solve my problem

採用された回答

Torsten
Torsten 2023 年 1 月 13 日
編集済み: Torsten 2023 年 1 月 13 日
L = 1;
Beta = @(y,L) pi/2.*((0<=y) & (y<L/2)) + (pi/2+0.3491).*((L/2<=y) & (y<3/4*L)) + (pi/2-0.3491).*((3/4*L<=y) & (y<=L));
figure(1)
plot((0:0.01:L),Beta(0:0.01:L,L))
a = pi/4;
fun_f=@(y,L) (1./(50*(1+y).*(cos(a)*cos(Beta(y,L))+sin(a)*sin(Beta(y,L)))+470));
figure(2)
plot((0:0.01:L),fun_f(0:0.01:L,L))
format long
int_value= integral(@(y)fun_f(y,L),0,L)
int_value =
0.001918690636037
int_value_improved = integral(@(y)fun_f(y,L),0,L/2) + integral(@(y)fun_f(y,L),L/2,3*L/4) + integral(@(y)fun_f(y,L),3/4*L,L)
int_value_improved =
0.001918689980576
  5 件のコメント
Torsten
Torsten 2023 年 1 月 14 日
編集済み: Torsten 2023 年 1 月 14 日
I doubt that Beta is what you want since the result is of type "logical".
What function do you want to use (in a mathematical notation) ?
But if you think everything is as wanted - here is the result:
LATO = 1;
intersezione_34LATO= (3/4)*LATO;
i = 1;
p = [0.125000000000000 0];
L_AB= 0.625000000000000;
alpha_1 = pi/2;
Beta = @(l,p,alpha_1,LATO) (pi/2+0.3491).*(LATO/2<=(p(i,1)+l.*sin(alpha_1(i)))) & ((p(i,2)+l.*sin(alpha_1(i)) <intersezione_34LATO)) + (pi/2-0.3491).*(intersezione_34LATO<=(p(i,2)+l.*sin(alpha_1(i)))) & ((p(i,2)+l.*sin(alpha_1(i))<= LATO));
fun_f=@(l) (1./(cos(double(Beta(l,p,alpha_1,LATO)))));
l=0:0.01:L_AB;
plot(l,fun_f(l))
tau_f(i) = integral(@(l)fun_f(l),0,L_AB(i))%,'AbsTol',0,'RelTol',1e-20,'ArrayValued',false)
tau_f = 0.8377
anto
anto 2023 年 1 月 15 日
OK, thanks a lot. With double it works, have a good day

サインインしてコメントする。

その他の回答 (1 件)

Walter Roberson
Walter Roberson 2023 年 1 月 14 日
Use matlabFunction with the piecewise expression, giving the 'file' option and 'optimize' false. And when you integral specify 'arrayvalued' true
matlabFunction can convert piecewise to if/else but only when writing to file, and the result cannot accept vectors
  2 件のコメント
Walter Roberson
Walter Roberson 2023 年 1 月 14 日
format long g
L = 1;
syms y
Pi = sym(pi);
Beta = piecewise(0<=y<L/2, Pi/2, ...
L/2 <= y < L*(3/4), Pi/2 + sym(3491)/10^4, ...
(3/4)*L <= y <=L, Pi/2 - sym(3491)/10^4);
a = Pi/4;
fun_f = (1./(50*(1+y)*(cos(a)*cos(Beta)+sin(a)*sin(Beta))+470))
fun_f = 
result_symbolic = int(fun_f, y, 0, L)
result_symbolic = 
result_vpa = vpa(result_symbolic, 16)
result_vpa = 
0.001918689980575797
fun_f_h = matlabFunction(fun_f, 'vars', y, 'File', 'fun_f.m', 'optimize', false)
fun_f_h = function_handle with value:
@fun_f
result_numeric = integral(fun_f_h, 0, L, 'arrayvalued', true)
result_numeric =
0.00191869063603731
dbtype fun_f.m
1 function fun_f = fun_f(y) 2 %FUN_F 3 % FUN_F = FUN_F(Y) 4 5 % This function was generated by the Symbolic Math Toolbox version 9.2. 6 % 14-Jan-2023 22:18:56 7 8 if ((y < 1.0./2.0) & (0.0 <= y)) 9 fun_f = 1.0./((sqrt(2.0).*(y.*5.0e+1+5.0e+1))./2.0+4.7e+2); 10 elseif ((y < 3.0./4.0) & (1.0./2.0 <= y)) 11 fun_f = 1.0./((y.*5.0e+1+5.0e+1).*((sqrt(2.0).*cos(pi./2.0+3.491e-1))./2.0+(sqrt(2.0).*sin(pi./2.0+3.491e-1))./2.0)+4.7e+2); 12 elseif ((y <= 1.0) & (3.0./4.0 <= y)) 13 fun_f = 1.0./((y.*5.0e+1+5.0e+1).*((sqrt(2.0).*cos(pi./2.0-3.491e-1))./2.0+(sqrt(2.0).*sin(pi./2.0-3.491e-1))./2.0)+4.7e+2); 14 else 15 fun_f = NaN; 16 end
anto
anto 2023 年 1 月 15 日
Thanks a lot

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeAssumptions についてさらに検索

製品


リリース

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by