How to apply Silhouette Score for optimal K in MATLAB

6 ビュー (過去 30 日間)
Med Future
Med Future 2023 年 1 月 10 日
コメント済み: Walter Roberson 2023 年 1 月 12 日
Hello,I Hope you are doing well. I have the following dataset i want to apply Silhouette Score from scrath.
I have the Python Script for that. Can anybody help me in implmenting it into MATLAB
The following code is in Python
costs = []
for p in range(10):
kmeans = K_Means(k=p,data = data[0],centeriod_init='random')
centroids, cluster_assignments, iters, orig_centroids = kmeans.fit(data[0])
X = data[0]
dist_ji = 0
a = 0
s=0
for i in range(len(data[0])):
for j in range(p):
dist_ji += euclidean_dist(centroids[j,:],X[i,:])
#print(dist_ji)
dist_ji -= sum(cluster_assignments[:,1])/len(data[0])
a = sum(cluster_assignments[:,1])/(len(data[0])-1)
s = (dist_ji - a)/max(dist_ji,a)
s = np.array(s)
s = s.item()
costs.append(s)
x = np.arange(10)
plt.plot(x,costs)
plt.title("Silhoutte Score")
plt.xlabel("K -->")
plt.ylabel("Dispersion")

回答 (1 件)

Walter Roberson
Walter Roberson 2023 年 1 月 11 日
I do not know enough python to know how to convert this code.
I suspect: call kmeans() with p as the number of centroids, getting back indices and centroid locations. Then take
nearest_center = CentroidLocations(CentroidIdx,:);
a = mean((data - nearest_center).^2,2);
or something like that.
  4 件のコメント
Med Future
Med Future 2023 年 1 月 11 日
@Walter Roberson CentroidLocations is not any command in MATLAB
Walter Roberson
Walter Roberson 2023 年 1 月 12 日
N = 10;
s = zeros(size(data,1), N);
for p = 1 : N
[CentroidIdx, CentroidLocations] = kmeans(data, p); %random initialization is default
nearest_center = CentroidLocations(CentroidIdx,:);
dist_ji = sum((data - nearest_center).^2,2);
a = mean(dist_ji);
s(:,p) = (dist_ji - a)./max(dist_ji,a);
end
plot(s)

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeCall Python from MATLAB についてさらに検索

製品


リリース

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by