Steepest Ascent Method to find maximum

5 ビュー (過去 30 日間)
Syed Abdul Rafay
Syed Abdul Rafay 2022 年 12 月 13 日
コメント済み: Torsten 2022 年 12 月 13 日
I am looking for a problem in my implementation for steepest ascent method. My answer is in a long equation form with h in it. But I am calculating h in the loop still ther is no value of it for the answer. The solution is at the end of the function
function STPAscent(x,theta,TC)
x0 =1500;
theta0=pi/6;
i=0;
i_max=100;
ea=5;
es=1;
while (es<double(subs(ea)) && i<i_max)
fx = tan(theta0)/(2*100^2*(cos(theta0))^2) + (2*9.81*x0)/(2*100^2*(cos(theta0))^2); % derivative wrt "x"
ftheta= x0*(sin(theta0)*(100*sin(theta0)+981*x0*cos(theta0))+50)/(1000000*(cos(theta0))^4); % derivative wrt "theta"
syms h
x=x0+fx*h;
theta=theta0+ftheta*h;
f= 1000 + (x*tan(theta))/(2*100^2*(cos(theta))^2) + (9.81*x^2)/(2*100^2*(cos(theta))^2);
c=diff(f,h);
assume(h,'clear')
h=solve(c==0,h,'PrincipalValue',true);
x_new=x+fx*h;
theta_new=theta0+ftheta*h;
ea=abs((x_new-x0)/x_new)*100;
x0=x_new;
theta0=theta_new;
i=i+1;
end
fxtheta = 1000 + (x0*tan(theta0))/(2*100^2*(cos(theta0))^2) + (9.81*x0^2)/(2*100^2*(cos(theta0))^2)
simplify(fxtheta)
end
Command Window
Warning: Unable to solve symbolically. Returning a numeric
solution using vpasolve.
> In sym/solve (line 304)
In STPAscent (line 18)
fxtheta =
(981*((8836235812531391*h)/4503599627370496 + 1499.9993954193889930311396801317)^2)/(2000000*cos(pi/6 - 0.52363352427033321420523588398365)^2) + (tan(pi/6 - 0.52363352427033321420523588398365)*((8836235812531391*h)/4503599627370496 + 1499.9993954193889930311396801317))/(20000*cos(pi/6 - 0.52363352427033321420523588398365)^2) + 1000
ans =
0.0018882263675909642813601409431637*h^2 + 2.8871384744661982638760370739896*h + 2103.6241090862540686603690416302
  3 件のコメント
Syed Abdul Rafay
Syed Abdul Rafay 2022 年 12 月 13 日
But h is unknown and if I don't use symbolic function the code doeasn't proceed with error unrecognized variable 'h'. I have to use the h value calculate in x new to get a updated value of x .
Torsten
Torsten 2022 年 12 月 13 日
You can define a function dependent on an unknown h for which you want to find the root and use "fzero" or "fsolve" to solve for h.
That's exactly what "solve" will do in your case because it doesn't find an analytical solution for h.

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeNumber Theory についてさらに検索

製品


リリース

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by