using Neural Network without toolbox
7 ビュー (過去 30 日間)
古いコメントを表示
I have to write a code to model Neural Network. I write it with sigmoid function, back propogation, and gradient descent method.
My problem is that I can not insert input higher than 1.
This is my code:
X = (0:0.01:1.5);
X = X';
LX = length(X);
B_size = 1;
NO_B = (LX / B_size);
Y_d = X.^2;
Width = 20;
H = zeros (Width,1);
H_f = zeros (Width,1);
Y = zeros(LX,1);
Y_f = zeros(LX,1);
W1 = rand (Width,B_size);
W2 = rand (B_size,Width);
b1 = 1 ;
b2 = 1 ;
E_total = 1;
Eta = 0.1;
itt = 0;
epoch = 1500;
for e = 1 : epoch
for i = 1 : NO_B
itt = itt + 1;
XX = X( (B_size * (i-1)) +1 : (i*B_size) );
YY_d = Y_d( (B_size * (i-1)) +1 : (i*B_size) );
H = W1*XX + b1;
H_f = SIG(H);
Y = W2*H_f + b2;
Y_f = SIG(Y);
E_total = sum ( 0.5 * (( YY_d - Y_f ).^2)) ;
E(itt) = E_total;
ITT(itt) = itt;
delta = YY_d - Y_f ;
dY = Y_f.*(1-Y_f) ;
dH = H_f.*(1-H_f) ;
pd2 = (delta.*dY) * H_f' ;
pd1 = (XX *((delta.*dY)' * W2).* dH')' ;
W2 = W2 + Eta*pd2;
W1 = W1 + Eta*pd1;
YY_f ( (B_size * (i-1)) +1 : (i*B_size) )= Y_f;
end
end
plot(X,YY_f,'r*',X,Y_d,'b:','LineWidth',2);
function [alpha_f] = SIG(alpha)
%SIGMOID FUNCTION
alpha_f = 1 ./ (1 + ((exp(1)) .^ (-alpha)));
end
2 件のコメント
Walter Roberson
2022 年 12 月 2 日
It is not clear to me which is the input that you cannot make larger than 1. Also you did not indicate what happens when you try to do that.
回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Image Data Workflows についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!