using Neural Network without toolbox

7 ビュー (過去 30 日間)
Mohammad
Mohammad 2022 年 12 月 2 日
コメント済み: Mohammad 2022 年 12 月 5 日
I have to write a code to model Neural Network. I write it with sigmoid function, back propogation, and gradient descent method.
My problem is that I can not insert input higher than 1.
This is my code:
X = (0:0.01:1.5);
X = X';
LX = length(X);
B_size = 1;
NO_B = (LX / B_size);
Y_d = X.^2;
Width = 20;
H = zeros (Width,1);
H_f = zeros (Width,1);
Y = zeros(LX,1);
Y_f = zeros(LX,1);
W1 = rand (Width,B_size);
W2 = rand (B_size,Width);
b1 = 1 ;
b2 = 1 ;
E_total = 1;
Eta = 0.1;
itt = 0;
epoch = 1500;
for e = 1 : epoch
for i = 1 : NO_B
itt = itt + 1;
XX = X( (B_size * (i-1)) +1 : (i*B_size) );
YY_d = Y_d( (B_size * (i-1)) +1 : (i*B_size) );
H = W1*XX + b1;
H_f = SIG(H);
Y = W2*H_f + b2;
Y_f = SIG(Y);
E_total = sum ( 0.5 * (( YY_d - Y_f ).^2)) ;
E(itt) = E_total;
ITT(itt) = itt;
delta = YY_d - Y_f ;
dY = Y_f.*(1-Y_f) ;
dH = H_f.*(1-H_f) ;
pd2 = (delta.*dY) * H_f' ;
pd1 = (XX *((delta.*dY)' * W2).* dH')' ;
W2 = W2 + Eta*pd2;
W1 = W1 + Eta*pd1;
YY_f ( (B_size * (i-1)) +1 : (i*B_size) )= Y_f;
end
end
plot(X,YY_f,'r*',X,Y_d,'b:','LineWidth',2);
function [alpha_f] = SIG(alpha)
%SIGMOID FUNCTION
alpha_f = 1 ./ (1 + ((exp(1)) .^ (-alpha)));
end
  2 件のコメント
Walter Roberson
Walter Roberson 2022 年 12 月 2 日
It is not clear to me which is the input that you cannot make larger than 1. Also you did not indicate what happens when you try to do that.
Mohammad
Mohammad 2022 年 12 月 5 日
The input is X.
However, I found the problem. the problem is because of Sigmoid function.

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeImage Data Workflows についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by