How to solve a system of 8 equations having integrals!
3 ビュー (過去 30 日間)
古いコメントを表示
d=1.18; E=27000000; L=121.53;
I=(pi*d^4)/64;
x1=16.99; x2=34.16; x3=51.33; x4=68.49; x5=85.66; x6=102.83; x7=115.61; x8=120.12;
F1=49; F2=49; F3=49; F4=49; F5=49; F6=49; F7=49; F8=11;
K1=100; K2=100; K3=100; K4=100; K5=100; K6=100; K7=100; K8=100;
These are my moment equation, that are further used in the deflection (d1, d2, ...., d8) calculations.
M1 = @(x)(F1*x-K1*d1*x);
M2 = @(x)(F1*x+F2*(x-x1)-K1*d1*x-K2*d2*(x-x1));
M3 = @(x)(F1*x+F2*(x-x1)+F3*(x-x2)-K1*d1*x-K2*d2*(x-x1)-K3*d3*(x-x2));
M4 = @(x)(F1*x+F2*(x-x1)+F3*(x-x2)+F4*(x-x3)-K1*d1*x-K2*d2*(x-x1)-K3*d3*(x-x2)-K4*d4*(x-x3));
M5 = @(x)(F1*x+F2*(x-x1)+F3*(x-x2)+F4*(x-x3)+F5*(x-x4)-K1*d1*x-K2*d2*(x-x1)-K3*d3*(x-x2)-K4*d4*(x-x3)-K5*d5*(x-x4));
M6 = @(x)(F1*x+F2*(x-x1)+F3*(x-x2)+F4*(x-x3)+F5*(x-x4)+F6*(x-x5)-K1*d1*x-K2*d2*(x-x1)-K3*d3*(x-x2)-K4*d4*(x-x3)-K5*d5*(x-x4)-K6*d6*(x-x5));
M7 = @(x)(F1*x+F2*(x-x1)+F3*(x-x2)+F4*(x-x3)+F5*(x-x4)+F6*(x-x5)+F7*(x-x6)-K1*d1*x-K2*d2*(x-x1)-K3*d3*(x-x2)-K4*d4*(x-x3)-K5*d5*(x-x4)-K6*d6*(x-x5)-K7*d7*(x-x6));
M8 = @(x)(F1*x+F2*(x-x1)+F3*(x-x2)+F4*(x-x3)+F5*(x-x4)+F6*(x-x5)+F7*(x-x6)+F8*(x-x7)-K1*d1*x-K2*d2*(x-x1)-K3*d3*(x-x2)-K4*d4*(x-x3)-K5*d5*(x-x4)-K6*d6*(x-x5)-K7*d7*(x-x6)-K8*d8*(x-x7));
Below are my eight equations with defined boundaries for integrals. And it contains eight variables i.e. d1, d2, ...., d8 as well. I am fine with both numerical or analytical solution.
eq1 = d1 ==(1/(E*I))*(integral(@(x)(M1(x).*x),0,x1)+integral(@(x)(M2(x).*x),x1,x2)+integral(@(x)(M3(x).*x),x2,x3)+integral(@(x)(M4(x).*x),x3,x4)+integral(@(x)(M5(x).*x),x4,x5)+integral(@(x)(M6(x).*x),x5,x6)+integral(@(x)(M7(x).*x),x6,x7)+integral(@(x)(M8(x).*x),x7,x8));
eq2 = d2 ==(1/(E*I))*(integral(@(x)(M1(x).*0),0,x1)+integral(@(x)(M2(x).*(x-x1)),x1,x2)+integral(@(x)(M3(x).*(x-x1)),x2,x3)+integral(@(x)(M4(x).*(x-x1)),x3,x4)+integral(@(x)(M5(x).*(x-x1)),x4,x5)+integral(@(x)(M6(x).*(x-x1)),x5,x6)+integral(@(x)(M7(x).*(x-x1)),x6,x7)+integral(@(x)(M8(x).*(x-x1)),x7,x8));
eq3 = d3 ==(1/(E*I))*(integral(@(x)(M1(x).*0),0,x1)+integral(@(x)(M2(x).*0),x1,x2)+integral(@(x)(M3(x).*(x-x2)),x2,x3)+integral(@(x)(M4(x).*(x-x2)),x3,x4)+integral(@(x)(M5(x).*(x-x2)),x4,x5)+integral(@(x)(M6(x).*(x-x2)),x5,x6)+integral(@(x)(M7(x).*(x-x2)),x6,x7)+integral(@(x)(M8(x).*(x-x2)),x7,x8));
eq4 = d4 ==(1/(E*I))*(integral(@(x)(M1(x).*0),0,x1)+integral(@(x)(M2(x).*0),x1,x2)+integral(@(x)(M3(x).*0),x2,x3)+integral(@(x)(M4(x).*(x-x3)),x3,x4)+integral(@(x)(M5(x).*(x-x3)),x4,x5)+integral(@(x)(M6(x).*(x-x3)),x5,x6)+integral(@(x)(M7(x).*(x-x3)),x6,x7)+integral(@(x)(M8(x).*(x-x2)),x7,x8));
eq5 = d5 ==(1/(E*I))*(integral(@(x)(M1(x).*0),0,x1)+integral(@(x)(M2(x).*0),x1,x2)+integral(@(x)(M3(x).*0),x2,x3)+integral(@(x)(M4(x).*0),x3,x4)+integral(@(x)(M5(x).*(x-x4)),x4,x5)+integral(@(x)(M6(x).*(x-x4)),x5,x6)+integral(@(x)(M7(x).*(x-x4)),x6,x7)+integral(@(x)(M8(x).*(x-x4)),x7,x8));
eq6 = d6 ==(1/(E*I))*(integral(@(x)(M1(x).*0),0,x1)+integral(@(x)(M2(x).*0),x1,x2)+integral(@(x)(M3(x).*0),x2,x3)+integral(@(x)(M4(x).*0),x3,x4)+integral(@(x)(M5(x).*0),x4,x5)+integral(@(x)(M6(x).*(x-x5)),x5,x6)+integral(@(x)(M7(x).*(x-x5)),x6,x7)+integral(@(x)(M8(x).*(x-x5)),x7,x8));
eq7 = d7 ==(1/(E*I))*(integral(@(x)(M1(x).*0),0,x1)+integral(@(x)(M2(x).*0),x1,x2)+integral(@(x)(M3(x).*0),x2,x3)+integral(@(x)(M4(x).*0),x3,x4)+integral(@(x)(M5(x).*0),x4,x5)+integral(@(x)(M6(x).*0),x5,x6)+integral(@(x)(M7(x).*(x-x6)),x6,x7)+integral(@(x)(M8(x).*(x-x6)),x7,x8));
eq8 = d8 ==(1/(E*I))*(integral(@(x)(M1(x).*0),0,x1)+integral(@(x)(M2(x).*0),x1,x2)+integral(@(x)(M3(x).*0),x2,x3)+integral(@(x)(M4(x).*0),x3,x4)+integral(@(x)(M5(x).*0),x4,x5)+integral(@(x)(M6(x).*0),x5,x6)+integral(@(x)(M7(x).*0),x6,x7)+integral(@(x)(M8(x).*(x-x7)),x7,x8));
0 件のコメント
採用された回答
Torsten
2022 年 11 月 29 日
d0 = ones(1,8);
d = fsolve(@fun,d0)
norm(fun(d))
function res = fun(D)
d=1.18;
E=27000000;
L=121.53;
I=(pi*d^4)/64;
x1=16.99; x2=34.16; x3=51.33; x4=68.49; x5=85.66; x6=102.83; x7=115.61; x8=120.12;
F1=49; F2=49; F3=49; F4=49; F5=49; F6=49; F7=49; F8=11;
K1=100; K2=100; K3=100; K4=100; K5=100; K6=100; K7=100; K8=100;
d1 = D(1);
d2 = D(2);
d3 = D(3);
d4 = D(4);
d5 = D(5);
d6 = D(6);
d7 = D(7);
d8 = D(8);
M1 = @(x)(F1*x-K1*d1*x);
M2 = @(x)(F1*x+F2*(x-x1)-K1*d1*x-K2*d2*(x-x1));
M3 = @(x)(F1*x+F2*(x-x1)+F3*(x-x2)-K1*d1*x-K2*d2*(x-x1)-K3*d3*(x-x2));
M4 = @(x)(F1*x+F2*(x-x1)+F3*(x-x2)+F4*(x-x3)-K1*d1*x-K2*d2*(x-x1)-K3*d3*(x-x2)-K4*d4*(x-x3));
M5 = @(x)(F1*x+F2*(x-x1)+F3*(x-x2)+F4*(x-x3)+F5*(x-x4)-K1*d1*x-K2*d2*(x-x1)-K3*d3*(x-x2)-K4*d4*(x-x3)-K5*d5*(x-x4));
M6 = @(x)(F1*x+F2*(x-x1)+F3*(x-x2)+F4*(x-x3)+F5*(x-x4)+F6*(x-x5)-K1*d1*x-K2*d2*(x-x1)-K3*d3*(x-x2)-K4*d4*(x-x3)-K5*d5*(x-x4)-K6*d6*(x-x5));
M7 = @(x)(F1*x+F2*(x-x1)+F3*(x-x2)+F4*(x-x3)+F5*(x-x4)+F6*(x-x5)+F7*(x-x6)-K1*d1*x-K2*d2*(x-x1)-K3*d3*(x-x2)-K4*d4*(x-x3)-K5*d5*(x-x4)-K6*d6*(x-x5)-K7*d7*(x-x6));
M8 = @(x)(F1*x+F2*(x-x1)+F3*(x-x2)+F4*(x-x3)+F5*(x-x4)+F6*(x-x5)+F7*(x-x6)+F8*(x-x7)-K1*d1*x-K2*d2*(x-x1)-K3*d3*(x-x2)-K4*d4*(x-x3)-K5*d5*(x-x4)-K6*d6*(x-x5)-K7*d7*(x-x6)-K8*d8*(x-x7));
res(1) = d1 -((1/(E*I))*(integral(@(x)(M1(x).*x),0,x1)+integral(@(x)(M2(x).*x),x1,x2)+integral(@(x)(M3(x).*x),x2,x3)+integral(@(x)(M4(x).*x),x3,x4)+integral(@(x)(M5(x).*x),x4,x5)+integral(@(x)(M6(x).*x),x5,x6)+integral(@(x)(M7(x).*x),x6,x7)+integral(@(x)(M8(x).*x),x7,x8)));
res(2) = d2 -((1/(E*I))*(integral(@(x)(M1(x).*0),0,x1)+integral(@(x)(M2(x).*(x-x1)),x1,x2)+integral(@(x)(M3(x).*(x-x1)),x2,x3)+integral(@(x)(M4(x).*(x-x1)),x3,x4)+integral(@(x)(M5(x).*(x-x1)),x4,x5)+integral(@(x)(M6(x).*(x-x1)),x5,x6)+integral(@(x)(M7(x).*(x-x1)),x6,x7)+integral(@(x)(M8(x).*(x-x1)),x7,x8)));
res(3) = d3 -((1/(E*I))*(integral(@(x)(M1(x).*0),0,x1)+integral(@(x)(M2(x).*0),x1,x2)+integral(@(x)(M3(x).*(x-x2)),x2,x3)+integral(@(x)(M4(x).*(x-x2)),x3,x4)+integral(@(x)(M5(x).*(x-x2)),x4,x5)+integral(@(x)(M6(x).*(x-x2)),x5,x6)+integral(@(x)(M7(x).*(x-x2)),x6,x7)+integral(@(x)(M8(x).*(x-x2)),x7,x8)));
res(4) = d4 -((1/(E*I))*(integral(@(x)(M1(x).*0),0,x1)+integral(@(x)(M2(x).*0),x1,x2)+integral(@(x)(M3(x).*0),x2,x3)+integral(@(x)(M4(x).*(x-x3)),x3,x4)+integral(@(x)(M5(x).*(x-x3)),x4,x5)+integral(@(x)(M6(x).*(x-x3)),x5,x6)+integral(@(x)(M7(x).*(x-x3)),x6,x7)+integral(@(x)(M8(x).*(x-x2)),x7,x8)));
res(5) = d5-((1/(E*I))*(integral(@(x)(M1(x).*0),0,x1)+integral(@(x)(M2(x).*0),x1,x2)+integral(@(x)(M3(x).*0),x2,x3)+integral(@(x)(M4(x).*0),x3,x4)+integral(@(x)(M5(x).*(x-x4)),x4,x5)+integral(@(x)(M6(x).*(x-x4)),x5,x6)+integral(@(x)(M7(x).*(x-x4)),x6,x7)+integral(@(x)(M8(x).*(x-x4)),x7,x8)));
res(6) = d6 -((1/(E*I))*(integral(@(x)(M1(x).*0),0,x1)+integral(@(x)(M2(x).*0),x1,x2)+integral(@(x)(M3(x).*0),x2,x3)+integral(@(x)(M4(x).*0),x3,x4)+integral(@(x)(M5(x).*0),x4,x5)+integral(@(x)(M6(x).*(x-x5)),x5,x6)+integral(@(x)(M7(x).*(x-x5)),x6,x7)+integral(@(x)(M8(x).*(x-x5)),x7,x8)));
res(7) = d7 -((1/(E*I))*(integral(@(x)(M1(x).*0),0,x1)+integral(@(x)(M2(x).*0),x1,x2)+integral(@(x)(M3(x).*0),x2,x3)+integral(@(x)(M4(x).*0),x3,x4)+integral(@(x)(M5(x).*0),x4,x5)+integral(@(x)(M6(x).*0),x5,x6)+integral(@(x)(M7(x).*(x-x6)),x6,x7)+integral(@(x)(M8(x).*(x-x6)),x7,x8)));
res(8) = d8 -((1/(E*I))*(integral(@(x)(M1(x).*0),0,x1)+integral(@(x)(M2(x).*0),x1,x2)+integral(@(x)(M3(x).*0),x2,x3)+integral(@(x)(M4(x).*0),x3,x4)+integral(@(x)(M5(x).*0),x4,x5)+integral(@(x)(M6(x).*0),x5,x6)+integral(@(x)(M7(x).*0),x6,x7)+integral(@(x)(M8(x).*(x-x7)),x7,x8)));
end
その他の回答 (1 件)
Walter Roberson
2022 年 11 月 29 日
Do not use == with integral() . integral() is for numeric integration, and if you use numeric integration returning a numeric value then the right side of the == would be numeric, and the == would be for asking whether d1 is exactly the same value, bit-for-bit identical (except for different nans being considered the same, and negative 0 being treated the same as regular 0)
If you want to process this system numerically using fsolve() then you should change the NAME == EXPRESSION into NAME - (EXPRESSION) and then you would have the function return [eq1, eq2, eq3, eq4, eq5, eq6, eq7, eq8]
You could alternately switch to using the Symbolic Toolbox and use int() or vpaintegral() instead of integral, and try to solve() or vpasolve() the vector of equations (which can be written with == in that case.)
参考
カテゴリ
Help Center および File Exchange で Calculus についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!