# Contour plot in Smith chart - how to do it?

20 ビュー (過去 30 日間)
dm 2011 年 10 月 18 日
コメント済み: Mena Labib 2019 年 11 月 12 日
I got a set of measured load-pull (LP) data from an amplifier, which I'd like to plot as contours in the Smith chart (an example on the desired end result: http://www.mwrf.com/files/30/21651/fig_02.gif )
I've put out a .txt file with the LP measurements on my public DropBox if anyone want to have a go at it ( http://dl.dropbox.com/u/13366636/lp_data.txt )
I import the data from the *.txt file as following:
% Measured loads are inside |G| = [0.1,0.8], <G = [0 180]
A = importdata('lp_data.txt');
Gmag = A.data(:,2); % magnitude of load reflection coeff.
Gphase = A.data(:,3); % phase of load reflection coeff., degrees
Gamma = Gmag.*exp(1i*Gphase*pi/180); % complex load reflection coeff
Pout = A.data(:,5); % measured output power, dBm
Gain = A.data(:,6); % measured power gain, dB
PAE = A.data(:,8); % measured power added efficiency, %
DC2RF = A.data(:,9); % measured drain efficiency, %
But from here on I really don't know how to proceed to be able to plot the LP data as contours. I had a look at the second last example at http://www.mathworks.se/help/techdoc/creating_plots/f10-2524.html but my problem is what to do about the Z-matrix (or even maybe how to make the proper X and Y matrices as well?). I haven't made measurements at all possible complex loads, so I assume I must perform some kind of interpolation in order for this to work, but as mentioned, here I'm clueluess.
Anyone who got any suggestions for where to start?
Best regards, dm

サインインしてコメントする。

### 採用された回答

Matt Tearle 2011 年 10 月 18 日
Not sure what your X, Y, and Z are, but I assume it's something like DC2RF (Z) as a function of Gmag and Gphase. In that case, something like this might work:
Greal = Gmag.*cosd(Gphase);
Gimag = Gmag.*sind(Gphase);
[X,Y] = meshgrid(linspace(min(Greal),max(Greal)),linspace(min(Gimag),max(Gimag)));
F = TriScatteredInterp(Greal,Gimag,DC2RF);
Z = F(X,Y);
h = polar([-pi pi], [0 1]);
delete(h)
hold on
contour(X,Y,Z,30)
##### 2 件のコメント表示非表示 1 件の古いコメント
Mena Labib 2019 年 11 月 12 日
I'm working on visualizing EVM Load Pull data as well.
The issue i'm facing is that the polar plot underlaying the contour doesn't properly reflect VSWR circles (i.e VSWR1 is a dot on a smith chart, but an entire circle on the polar plot).
I was wondering if there was a way to plot these real and imag values on a smith chart, and overlay a contour?
Here's my code using the suggested method, and a corresponding plot (note how the inner circle is empty even though my data uses VSWR1)
Gmag = [1.18, 1.0, 1.16, 1.16, 1.1, 1.16, 1.16, 1.09, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.06, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.16, 1.16, 1.19, 1.19, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.18, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.18, 1.2, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0]; % A.data(:,2); % magnitude of load reflection coeff.
Gphase = [13.18, 78.68, 12.84, 14.63, 20.07, 16.44, 16.72, 83.04, 44.97, 50.03, 55.04, 60.02, 64.98, 70.05, 75.02, 79.96, 84.94, 90.08, 95.0, 99.94, 104.97, 109.86, 114.87, 120.28, 124.78, 130.06, 135.01, 140.16, 145.05, 149.89, 99.42, 159.92, 165.03, 170.01, 174.66, 179.72, -175.08, -169.9, -165.17, -159.95, -154.75, -150.2, -144.83, -140.16, -134.74, -130.03, -125.24, -119.84, -114.99, -110.01, -105.0, -99.87, -95.13, -89.92, -85.05, -80.02, -74.87, -70.0, -64.98, -60.04, -54.98, -50.0, -45.02, -40.0, -35.01, -30.02, -25.0, -20.02, -14.99, 11.24, 11.87, 8.76, 8.65, 10.0, 14.99, 19.99, 24.99, 30.01, 34.98, 20.01, 44.97, 50.0, 54.99, 59.98, 65.02, 69.98, 74.95, 79.95, 85.06, 90.0, 95.01, 100.02, 105.13, 109.98, 115.1, 120.09, 124.95, 129.91, 134.92, 140.13, 145.11, 149.9, 155.03, 160.12, 165.22, 170.1, 175.18, -179.91, -175.15, -169.98, -164.86, -160.16, -154.81, -150.06, -144.84, -140.16, -135.02, -129.83, -125.15, -120.0, -114.9, -109.86, -104.82, -99.87, -94.93, -90.0, -85.08, -79.87, -75.04, -69.96, -64.91, -60.09, -55.04, -50.06, -45.05, -40.05, -34.95, -30.01, -24.96, -19.99, -14.97, 8.41, -4.98, -0.03, 5.01, 9.99, 14.99, 19.97, 25.04, 30.03, 34.96, 40.05, 45.0, 50.01, 55.05, 60.41, 64.91, 69.92, 75.09, 80.06, 84.91, 90.11, 94.97, 99.93, 104.96, 110.07, 115.01, 120.07, 124.75, 130.04, 135.03, 140.07, 144.82, 150.11, 155.05, 159.99, 164.97, 169.9, 174.97, -179.97, -174.95, -169.92, -164.91, -159.88, -154.88, -149.95, -145.09, -139.85, -135.05, -129.85, -124.7, -120.02, -115.0, -110.08, -104.89, -100.08, -94.99, -90.01, -84.87, -80.03, -74.99, -70.03, -64.91, -60.08, -54.93, -50.06, -44.98, -40.03, -35.05, -30.06, -25.05, -20.02, -15.04, -10.03, -4.99, -0.02, 4.99, 10.04, 15.05, 19.94, 25.02, 29.97, 35.01, 40.05, 44.93, 50.0, 54.97, 59.98, 65.04, 70.1, 75.16, 79.98, 84.96, 90.07, 95.0, 100.1, 105.05, 110.09, 114.9, 120.11, 124.85, 129.96, 135.13, 140.1, 145.13, 149.88, 155.16, 160.08, 165.07, 170.04, 175.06, -179.88, -174.83, -169.79, -165.2, -160.17, -155.18, -149.86, -145.02, -139.83, -135.03, -129.92, -124.88, -119.91, -115.06, -109.91, -104.87, -99.9, -95.08, -90.07, -85.11, -79.95, -74.89, -69.9, -64.98, -59.93, -55.0, -49.98, -45.05, -40.04, -35.08, -30.04, -24.99, -20.03, -14.96, -9.95, -5.06, 0.02, 4.98, 10.04, 14.95, 20.02, 25.05, 30.03, 34.99, 39.96, 44.95, 50.02, 54.97, 60.08, 64.95, 70.01, 74.94, 80.06, 84.89, 90.11, 94.93, 100.08, 105.08, 109.9, 115.1, 120.03, 125.1, 129.96, 134.87, 139.88, 144.98, 150.15, 155.12, 160.19, 164.88, 169.96, 175.06, 179.91, -174.89, -170.13, -165.03, -159.91, -154.82, -150.17, -144.84, -139.92, -135.04, -129.87, -125.13, -120.13, -114.9, -110.08, -105.02, -100.08, -95.02, -89.99, -85.03, -79.88, -75.08, -70.07, -64.95, -59.94, -55.01, -49.92, -44.93, -39.94, -35.02, -29.96, -24.96, -20.01, -15.03, -10.05, -5.03, -0.0, 5.02, 10.04, 14.93, 19.96, 25.08, 29.94, 35.07, 39.99, 45.04, 50.08, 54.96, 59.99, 64.92, 69.98, 74.9, 79.97, 84.95, 90.08, 95.09, 99.9, 105.03, 110.0, 115.06, 120.16, 125.05, 130.03, 135.11, 139.96, 144.89, 149.89, 154.98, 159.89, 165.17, 170.08, 175.02, -179.97, -174.95, -169.99, -165.07, -160.15, -154.89, -150.07, -144.95, -139.88, -134.86, -129.93, -125.08, -119.99, -114.99, -110.11, -104.96, -100.0, -95.12, -89.99, -84.94, -79.97, -75.06, -69.96, -65.0, -60.12, -55.06, -50.04, -44.97, -39.9, -35.09, -30.05, -25.01, -20.04, -14.99, -10.02, -4.94, 0.08, 5.03, 10.01, 15.03, 20.01, 25.06, 29.98, 34.99, 39.93, 44.97, 49.97, 54.93, 60.07, 65.08, 69.98, 74.97, 80.01, 84.95, 90.05, 94.98, 100.04, 105.09, 109.99, 114.98, 120.03, 125.14, 130.01, 134.98, 140.03, 145.16, 150.04, 154.98, 160.08, 164.86, 170.01, 175.16, -179.96, -175.08, -169.88, -165.09, -159.95, -154.84, -150.15, -144.83, -139.91, -135.04, -129.92, -124.9, -119.98, -115.16, -110.1, -104.86, -100.11, -94.83, -89.88, -84.98, -80.12, -75.05, -70.09, -64.97, -59.91, -54.91, -49.97, -44.99, -40.01, -35.01, -29.98, -24.94, -19.93, -14.98, -10.03, -4.94, -0.05, 4.92, 9.94, 14.99, 20.01, 25.06, 29.99, 34.98, 40.08, 45.08, 49.99, 55.05, 60.05, 64.93, 70.09, 75.0, 80.03, 84.95, 90.03, 94.97, 99.99, 105.07, 109.94, 114.87, 119.87, 124.89, 129.97, 134.85, 140.12, 145.15, 149.93, 155.1, 160.07, 165.11, 170.14, 174.84, 179.95, -174.9, -170.17, -165.12, -160.09, -155.09, -150.16, -144.95, -140.13, -135.04, -130.04, -125.14, -120.02, -115.02, -110.1, -105.01, -100.07, -94.91, -90.08, -84.99, -79.98, -75.04, -69.93, -64.87, -59.88, -54.9, -50.04, -44.89, -39.96, -34.97, -29.94, -25.08, -20.02, -15.0, -9.95, -5.07, 0.03, 4.98, 9.97, 15.0, 19.99, 25.0, 30.07, 35.01, 40.02, 44.93, 49.94, 55.08, 59.93, 65.08, 70.08, 74.95, 80.01, 84.95, 90.03, 94.96, 99.96, 105.03, 110.14, 115.04, 120.0, 124.96, 129.99, 135.09, 139.97, 144.93, 149.96, 155.05, 159.9, 164.86, 170.16, 175.13, -179.86, -175.15, -170.13, -165.17, -159.88, -154.96, -150.11, -144.99, -139.93, -134.93, -130.02, -124.89, -119.9, -114.99, -109.87, -104.91, -100.06, -94.98, -89.94, -84.97, -80.03, -74.91, -70.11, -65.11, -59.91, -54.99, -49.96, -45.1, -39.96, -34.97, -29.93, -25.05, -19.97, -15.07, -9.94, -4.94, 0.08, 4.96, 10.07, 15.04, 19.97, 25.1, 30.08, 34.91, 40.04, 45.03, 49.92, 54.92, 60.06, 65.06, 70.11, 74.99, 80.03, 84.99, 90.06, 94.98, 99.98, 105.03, 110.13, 115.0, 119.91, 125.14, 130.11, 134.86, 139.98, 144.86, 149.85, 154.89, 160.01, 164.92, 170.16, 175.08, -179.98, -174.99, -170.04, -165.13, -159.91, -155.07, -149.97, -144.93, -139.95, -135.03, -129.89, -124.87, -119.96, -115.12, -110.09, -104.92, -99.86, -95.13, -89.9, -84.99, -80.12, -75.05, -70.05, -65.09, -59.9, -55.03, -50.05, -44.98, -40.09, -35.09, -30.07, -24.98, -20.06, -14.9, -10.09, -4.99]; % phase of load reflection coeff., degrees
EVM = [-38.4051, -38.1134, -38.355, -38.3263, -38.2224, -38.3309, -38.3149, -37.9574, -38.278, -38.2608, -38.2315, -38.2056, -38.1556, -38.0535, -37.9942, -37.9187, -37.8822, -37.8648, -37.8539, -37.8298, -37.7994, -37.7208, -37.755, -37.729, -37.7232, -37.7409, -37.7202, -37.6981, -37.6586, -37.6379, -37.7907, -37.6779, -37.6323, -37.6648, -37.6531, -37.6713, -37.6802, -37.7052, -37.7578, -37.8317, -37.8259, -37.8114, -37.8968, -37.9254, -37.974, -38.0336, -38.0665, -38.1079, -38.1336, -38.1613, -38.1823, -38.2185, -38.2856, -38.3487, -38.3557, -38.3954, -38.3843, -38.4437, -38.2693, -38.3124, -38.3271, -38.3513, -38.3359, -38.362, -38.3941, -38.3563, -38.3746, -38.3624, -38.3627, -38.3383, -38.3273, -38.4069, -38.452, -38.391, -38.3582, -38.4503, -38.4324, -38.3821, -38.3678, -38.301, -38.2737, -38.2078, -38.0747, -37.9603, -37.8644, -37.7504, -37.719, -37.6511, -37.6077, -37.5448, -37.4814, -37.448, -37.4185, -37.3624, -37.2848, -37.2474, -37.1796, -37.1483, -37.161, -37.1424, -37.1881, -37.1524, -37.1257, -37.1371, -37.1554, -37.1386, -37.1828, -37.2348, -37.232, -37.325, -37.3198, -37.3954, -37.472, -37.4969, -37.5833, -37.6132, -37.7443, -37.8164, -37.883, -37.9281, -37.9853, -38.115, -38.2355, -38.272, -38.2989, -38.3849, -38.4089, -38.5015, -38.5942, -38.6376, -38.6928, -38.6969, -38.7362, -38.7265, -38.8113, -38.6519, -38.656, -38.7967, -38.7928, -38.7978, -38.7152, -38.4262, -38.5853, -38.7598, -38.681, -38.6369, -38.5674, -38.5085, -38.437, -38.3364, -38.308, -38.2024, -38.0524, -37.8991, -37.8064, -37.7196, -37.6197, -37.5059, -37.4245, -37.3145, -37.4754, -37.3531, -37.2926, -37.1981, -37.1088, -37.0101, -36.9557, -36.892, -36.8387, -36.8611, -36.7916, -36.7695, -36.7369, -36.7368, -36.7556, -36.68, -36.7318, -36.7396, -36.7792, -36.8154, -36.8577, -36.9127, -37.0843, -37.1491, -37.2449, -37.297, -37.4034, -37.5307, -37.6244, -37.7371, -37.8205, -37.8964, -37.8005, -37.9368, -38.0677, -38.1649, -38.2884, -38.3965, -38.5003, -38.6042, -38.6095, -38.7152, -38.7235, -38.8295, -38.9127, -38.9336, -38.946, -39.0022, -39.032, -39.0462, -38.9798, -38.9851, -38.902, -38.8947, -38.8261, -38.8877, -38.803, -38.7031, -38.5904, -38.4916, -38.274, -38.1798, -38.0354, -37.9105, -38.0084, -37.9076, -37.7954, -37.6043, -37.5046, -37.416, -37.2582, -37.1408, -36.9959, -36.868, -36.7131, -36.6188, -36.571, -36.4606, -36.3642, -36.3157, -36.5066, -36.4439, -36.3851, -36.3422, -36.2772, -36.2973, -36.3016, -36.3023, -36.3127, -36.3707, -36.3935, -36.508, -36.5363, -36.6062, -36.6827, -36.7854, -36.8835, -37.0056, -37.1438, -37.2408, -37.1466, -37.2968, -37.4983, -37.6396, -37.783, -37.9294, -38.0643, -38.2309, -38.355, -38.505, -38.5939, -38.752, -38.8411, -38.7602, -38.8313, -38.9392, -38.9882, -39.0258, -39.0821, -39.0731, -39.0763, -39.0963, -39.0802, -39.0988, -39.04, -39.0098, -38.9575, -39.0037, -38.9056, -38.7832, -38.6536, -38.5301, -38.3817, -38.2346, -38.05, -37.8504, -37.7359, -37.547, -37.4161, -37.2221, -37.0722, -36.8726, -36.7257, -36.8489, -36.7024, -36.5591, -36.4603, -36.3358, -36.2143, -36.0778, -35.9588, -35.8441, -35.7917, -35.7538, -35.6916, -35.6615, -35.8852, -35.8819, -35.8831, -35.9429, -35.9435, -36.0165, -35.7564, -35.843, -35.9323, -36.0039, -36.1058, -36.2527, -36.3694, -36.5359, -36.6776, -36.8266, -36.9868, -37.1649, -37.2788, -37.4931, -37.7148, -37.8284, -37.9945, -38.1682, -38.3912, -38.3355, -38.4846, -38.6545, -38.801, -38.9048, -38.9998, -39.1538, -39.1546, -39.2793, -39.2881, -39.3179, -39.3515, -39.3789, -39.3469, -39.2909, -39.2532, -39.2125, -39.1185, -38.7676, -38.6445, -38.5307, -38.4127, -38.2517, -38.0659, -37.8854, -37.9914, -37.7717, -37.5859, -37.3495, -37.1883, -37.0157, -36.8398, -36.6747, -36.4901, -36.3033, -36.1668, -36.31, -36.1249, -35.9766, -35.8798, -35.6446, -35.5815, -35.5293, -35.3659, -35.3475, -35.3128, -35.2187, -35.2323, -35.1898, -35.205, -35.2015, -35.2118, -35.2352, -35.2996, -35.3898, -35.5183, -35.5893, -35.7687, -35.8567, -36.0515, -36.2103, -36.3774, -36.5881, -36.7329, -36.9508, -37.1042, -37.3089, -37.5175, -37.5272, -37.7395, -37.9789, -38.1881, -38.3895, -38.5442, -38.6909, -38.8327, -38.9909, -39.1453, -39.2218, -39.3222, -39.1621, -39.2343, -39.2591, -39.2403, -39.2691, -39.2107, -39.1571, -39.0887, -39.0759, -38.9248, -38.7508, -38.6387, -38.4571, -38.2916, -38.1544, -37.9174, -37.761, -37.4666, -37.2757, -37.0649, -36.8959, -36.9747, -36.7798, -36.589, -36.4391, -36.1609, -36.046, -35.847, -35.7066, -35.5329, -35.6906, -35.4576, -35.3471, -35.2178, -35.0921, -34.9537, -34.9298, -34.8249, -34.7449, -34.6821, -34.6776, -34.6772, -34.6928, -34.75, -34.8299, -34.8943, -34.9456, -35.0699, -35.2691, -35.3209, -35.5002, -35.6929, -35.8517, -36.0581, -36.3144, -36.5061, -36.6922, -36.941, -37.1787, -37.1655, -37.3878, -37.5921, -37.7779, -38.0572, -38.344, -38.5043, -38.738, -38.8945, -38.8177, -38.9489, -39.0708, -39.2085, -39.1779, -39.2755, -39.2703, -39.3354, -39.2857, -39.2541, -39.2052, -39.1141, -38.9845, -38.8833, -38.3128, -38.1104, -38.3522, -38.1545, -37.9732, -37.7625, -37.571, -37.3108, -37.0835, -36.8583, -36.6434, -36.4698, -36.5529, -36.2726, -36.1112, -35.8806, -35.6851, -35.5117, -35.3126, -35.0843, -34.8903, -35.0656, -34.8894, -34.7453, -34.6134, -34.5054, -34.3697, -34.2296, -34.2413, -34.1808, -34.1716, -34.4901, -34.4676, -34.5327, -34.5919, -34.6165, -34.744, -34.8944, -34.746, -34.9025, -35.1025, -35.2586, -35.4608, -35.7164, -35.9477, -36.1953, -36.4198, -36.6625, -36.947, -36.9646, -37.2592, -37.4883, -37.7505, -38.0851, -38.2558, -38.5417, -38.471, -38.6606, -38.8247, -39.0421, -39.1508, -39.1867, -39.2153, -39.2642, -39.3414, -39.3271, -39.3487, -39.2845, -39.1749, -38.7354, -38.5888, -38.5256, -38.0951, -37.9499, -37.7192, -37.5273, -37.3928, -37.5216, -37.3538, -37.1348, -36.7985, -36.6029, -36.3225, -36.1061, -35.902, -35.6788, -35.7856, -35.5399, -35.3041, -35.1122, -34.8601, -34.635, -34.7791, -34.5713, -34.4202, -34.2568, -34.0535, -33.9853, -33.912, -33.8052, -33.7502, -34.0063, -33.7955, -33.9652, -33.8692, -33.902, -34.0025, -34.0915, -34.1541, -34.2594, -34.4584, -34.6829, -34.5486, -34.79, -35.1194, -35.3928, -35.6164, -35.907, -36.1439, -36.4151, -36.7488, -36.7936, -37.0644, -37.3356, -37.6018, -37.8645, -38.1257, -38.179, -38.399, -38.5853, -38.8155, -38.9449, -39.0495, -39.1665, -38.9607, -38.9389, -38.9113, -38.8793, -38.8171, -38.8002, -38.7015, -38.5746, -38.4495, -38.2939, -37.8623, -37.6597, -37.4221, -37.2169, -37.0672, -36.8069, -36.6087, -36.7351, -36.4817, -36.2337, -36.0466, -35.792, -35.5211, -35.2782, -35.3605, -35.1163, -34.8546, -34.6045, -34.3675, -34.1527, -34.2363, -34.12, -33.8836, -33.7401, -33.5624, -33.4635, -33.2474, -33.1066, -33.4036, -33.3237, -33.2973, -33.2574, -33.3381, -33.3453, -33.4746, -33.5417, -33.6937, -33.8426, -34.0329, -34.1837, -34.372, -34.2864, -34.6102, -34.8972, -35.2161, -35.5671, -35.8944, -36.1583, -36.475, -36.4818, -36.8029, -37.1309, -37.3971, -37.6959, -37.9752, -37.9865, -38.2816, -38.4698, -38.6807, -38.82, -38.9049, -38.6991, -38.7356, -38.7473, -38.7071, -38.6845, -38.6045, -38.5745, -38.4227, -38.2886, -38.1656, -37.9956];
Greal = Gmag.*cosd(Gphase);
Gimag = Gmag.*sind(Gphase);
[X,Y] = meshgrid(linspace(min(Greal),max(Greal)),linspace(min(Gimag),max(Gimag)));
F = TriScatteredInterp(Greal',Gimag',EVM');
Z = F(X,Y);
h = polar([-pi pi], [2 3]);
delete(h)
hold on
contour(X,Y,Z,719)

サインインしてコメントする。

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by