smoothing with Gaussian Kernel for loop problem

4 ビュー (過去 30 日間)
KHOULOUD DABOUSSI
KHOULOUD DABOUSSI 2022 年 11 月 16 日
コメント済み: Mathieu NOE 2022 年 11 月 22 日
im having a probelm with smoothing the data "ys" using gaussian kernel function everytime i run the for loop i recieve uhat = ys and kerf = 0 0 0 0 0 ... anyone can help me?
ns =length(ys);
nv =length(tv);
lambda = 0.05;
tv = (1:1:1000)';
for i = 1 : ns
k=(tv-tv(i));
kerf=exp(-k.*k/2*(lambda^2))/(sqrt(2*pi)*lambda);
uhat(i)=sum(kerf.*ys(i))/sum(kerf);
end

採用された回答

Mathieu NOE
Mathieu NOE 2022 年 11 月 18 日
hello
try this
lambda = 0.05;
tv = (1:1:1000)';
nv =length(tv);
ys = sin(4*pi*tv./max(tv))+0.25*rand(nv,1);% dummy data
for i = 1 : nv
k=(tv-tv(i));
kerf=exp(-k.*k/2*(lambda^2))/(sqrt(2*pi)*lambda);
uhat(i)=sum(kerf(:).*ys(:))/sum(kerf);
end
plot(tv,ys,tv,uhat);
  8 件のコメント
KHOULOUD DABOUSSI
KHOULOUD DABOUSSI 2022 年 11 月 21 日
by chance,do you have any idea how to select the optimal bandwidth (lambda)? not using ksdensity?
Mathieu NOE
Mathieu NOE 2022 年 11 月 22 日
hello again
well, statistics are not my field of expertise
there are some publications that describe some methods for optimal tuning of lambda
but then i's up to you to code that as a matlab function (would basically be your own version of ksdensity)

サインインしてコメントする。

その他の回答 (0 件)

製品


リリース

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by