- call the function with a script or function in another m-file, or
- call it in a script defined before the function in the same m-file. In this case the function will have to have "end" as the last line.
why do i get this error as no enough input arguments
1 回表示 (過去 30 日間)
古いコメントを表示
function [J,distinct_d]=jd(X,p)
% Computes the distances between all pairs of points in a sampling
% plan X using the p–norm, sorts them in ascending order and
% removes multiple occurrences.
%
% Inputs:
% X – sampling plan being evaluated
% p – distance norm (p=1 rectangular – default, p=2 Euclidean)
%
% Outputs:
% J – multiplicity array (that is, the number of pairs
% separated by each distance value).
% distinct_d – list of distinct distance values
if ~exist('p','var')
p=1;
end
% Number of points in the sampling plan
n=size(X,1);
% Compute the distances between all pairs of points
d=zeros(1,n*(n-1)/2);
for i=1:n-1
for j=i+1:n
% Distance metric: p–norm
d((i-1)*n-(i-1)*i/2+j-i)=norm(X(i,:)-X(j,:),p);
end
end
% Remove multiple occurrences
distinct_d=unique(d);
% Pre-allocate memory for J
J =zeros(size(distinct_d));
% Generate multiplicity array
for i=1:length(distinct_d)
% J(i) will contain the number of pairs separated
% by the distance distinct_d(i)
J(i)=sum(ismember(d,distinct_d(i)));
end
after this wheni am running this code i am gettimg a error as no enough arguments
this code i have taken from a book
0 件のコメント
回答 (3 件)
Image Analyst
2022 年 11 月 17 日
You can't just push the green run triangle because it won't know what you want for the input arguments. You have to either
0 件のコメント
Kevin Holly
2022 年 11 月 16 日
I just ran the code without getting an error.
x = 10*rand(4,2)
[J,distinct_d] = jd(x,1)
function [J,distinct_d]=jd(X,p)
% Computes the distances between all pairs of points in a sampling
% plan X using the p–norm, sorts them in ascending order and
% removes multiple occurrences.
%
% Inputs:
% X – sampling plan being evaluated
% p – distance norm (p=1 rectangular – default, p=2 Euclidean)
%
% Outputs:
% J – multiplicity array (that is, the number of pairs
% separated by each distance value).
% distinct_d – list of distinct distance values
if ~exist('p','var')
p=1;
end
% Number of points in the sampling plan
n=size(X,1);
% Compute the distances between all pairs of points
d=zeros(1,n*(n-1)/2);
for i=1:n-1
for j=i+1:n
% Distance metric: p–norm
d((i-1)*n-(i-1)*i/2+j-i)=norm(X(i,:)-X(j,:),p);
end
end
% Remove multiple occurrences
distinct_d=unique(d);
% Pre-allocate memory for J
J =zeros(size(distinct_d));
% Generate multiplicity array
for i=1:length(distinct_d)
% J(i) will contain the number of pairs separated
% by the distance distinct_d(i)
J(i)=sum(ismember(d,distinct_d(i)));
end
end
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Large Files and Big Data についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!