about psd estimation by FFT

11 ビュー (過去 30 日間)
Abdullah Talha Sözer
Abdullah Talha Sözer 2022 年 11 月 10 日
Hi,
In topic "Power Spectral Density Estimates Using FFT (https://www.mathworks.com/help/signal/ug/power-spectral-density-estimates-using-fft.html)", why are squared dft values multipled by (1/(fs*N))?
fs = 1000;
t = 0:1/fs:1-1/fs;
x = cos(2*pi*100*t) + randn(size(t));
N = length(x);
xdft = fft(x);
xdft = xdft(1:N/2+1);
psdx = (1/(fs*N)) * abs(xdft).^2;
psdx(2:end-1) = 2*psdx(2:end-1);
freq = 0:fs/length(x):fs/2;

採用された回答

Askic V
Askic V 2022 年 11 月 10 日
It is because of Parseval's theorem, which expresses the energy of a signal in time-domain in terms of the average energy in its frequency components
In this case, n and k are integers, but actually these are samples i.e. discrete time intervals, so they can be considered as n*deltaT, in such case it is
deltaT is a sample time period i.e. deltaT = 1/Fs where Fs is a sampling frequency.
That is why 1/(fs*N)!
  1 件のコメント
Abdullah Talha Sözer
Abdullah Talha Sözer 2022 年 11 月 11 日
Thanks

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeParametric Spectral Estimation についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by