How do I determine the surface area of a 2-D surface in a 3-D space?

35 ビュー (過去 30 日間)
I have 3 vectors "xcoord", "ycoord", and "zcoord" that represent the (x,y,z)-coordinates of a 2D surface in 3D space. I want to determine the surface area of the surface.
I tried using the "surfaceArea" method for an "AlphaShape" object, but the surface was disconnected. On changing the "Alpha" value, the 2D surface became a 3D object.
I want to compute the surface area for the connected 2D surface. How can I do this? 

採用された回答

MathWorks Support Team
MathWorks Support Team 2017 年 7 月 10 日
If  you want to compute the surface area of a 2-D surface in a 3-D space, the Delaunay Triangulation would be the best approach to go ahead with. You could compute the sum of the triangles formed by the Delaunay Triangulation to find the surface area of the 2-D surface.
 The following steps should help to obtain a 'delaunay' surface and to compute the surface area of the same.
 1) tri = delaunay(X,Y) creates a 2-D Delaunay triangulation. 'tri' is a matrix representing the set of triangles that make up the triangulation.
tri = delaunay(xcoord,zcoord);
P = [xcoord,ycoord,zcoord];
2) Obtain the edges in each triangle formed by the 'delaunaytriangulation'
v1 = P(tri(:,2), :) - P(tri(:,1), :);
v2 = P(tri(:,3), :) - P(tri(:,2), :);
3) Calculating the cross product of the edges in each triangle of the surface
cp = 0.5*cross(v1,v2);
4) Surface area of the entire surface is calculated as the sum of the areas of the individual triangles
surfaceArea = sum(sqrt(dot(cp, cp, 2)))

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeDelaunay Triangulation についてさらに検索

製品


リリース

R2015b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by