# How to use Delaunay Triangulation to create a plane with constraints?

3 ビュー (過去 30 日間)
youssef hany 2022 年 11 月 2 日

I have four coplanar points shown in red and I want to create a plane bounded by these four points (representing a wall). The green points represent constraints in the wall that I want to be empty in the plane. I want to use Delaunay Triangulation do that but it fails because points are coplanar. what should I do?
##### 2 件のコメントなしを表示なしを非表示
Walter Roberson 2022 年 11 月 2 日
It is not clear what "create a plane" means to you ?
You might be interested in some of the functions from the PDE Toolbox, as some of them include creating a mesh for an shapes "excluding" particular shapes.
youssef hany 2022 年 11 月 2 日

I mean a 3D plane surface that can be exported to revit, something like that

サインインしてコメントする。

### 回答 (1 件)

Jeffrey Clark 2022 年 11 月 8 日
@youssef hany, if all your points are coplanar for one section (in your picture a wall, floor, etc) they can be processed as 2D by dropping the constant dimension and using 2D delaunayTriangulation with constraints for windows, doors (regular and trap). If you are working in arbitrary 3D where coplanar points don't share the same one x, y or z you can rotate each coplanar section to eliminate one dimension using something like:
function Pxy = rotateCoplanar(Pxyz)
Rx = @(t) [ 1 0 0 ...
; 0 cos(t) -sin(t) ...
; 0 sin(t) cos(t) ];
% Ry = @(t) [ cos(t) 0 sin(t) ...
% ; 0 1 0 ...
% ; -sin(t) 0 cos(t) ];
Rz = @(t) [ cos(t) -sin(t) 0 ...
; sin(t) cos(t) 0 ...
; 0 0 1 ];
Pmean = mean(Pxyz,1);
Pnew = Pxyz-Pmean;
uT = cross(Pnew(1,:)-Pnew(3,:),Pnew(2,:)-Pnew(3,:)); uT = uT/norm(uT);
nx = Rz(atan2(uT(1),uT(2)));
uTnx = (nx*uT')';
Pxy = (Rx(atan2(uTnx(2),uTnx(3)))*nx*Pnew')'; Pxy = Pxy(:,1:2);
end

サインインしてコメントする。

### カテゴリ

Help Center および File ExchangeDelaunay Triangulation についてさらに検索

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by