indexing through array in for loop

3 ビュー (過去 30 日間)
Emu
Emu 2022 年 10 月 30 日
編集済み: Star Strider 2022 年 10 月 30 日
hi - I am trying to generate an input matric for the Cohen's Kappa function. I have some code which does this iteratively - that is goes through all combinations of my coding key (0-16) and sums them, but am trying to find a way to loop through all combinations of the coding key (0,0; 0,1; 0,2 etc), rather than write out all 289 instances.
for row = 1:length(whoSpeakMaster) %loop through the coded stage 1 output
if whoSpeakMaster(row,1) == 0 && whoSpeakCoder(row,1) == 0 %identify how many instances of master and coder coding 1
speakerBb11 = speakerBb11+1; %sum((whoSpeakMaster(row,1) == 0)) %&& whoSpeakCoder == 0));%adds to the counter
end
if whoSpeakMaster(row,1) == 0 && whoSpeakCoder(row,1) == 1
speakerBb12 = speakerBb12 +1;
end
end
  2 件のコメント
Star Strider
Star Strider 2022 年 10 月 30 日
The κ statistic is for inter-rater reliability.
What are your original data, and what do you want to do with them?
Emu
Emu 2022 年 10 月 30 日
Yes - so for each instance I will have two datasets (from two seperate coders/raters - whoSpeakMaster and whoSpeakCoder - attached) which have each been coded/rated on each row from a coding scheme from 0-16. So I just want to generate from them how many times coder 1 has rated '0' and coder 2 has rated '0' and so on for all combinations.

サインインしてコメントする。

回答 (1 件)

Star Strider
Star Strider 2022 年 10 月 30 日
What function are you using to estimate the κ statistic? I don’t see any built-in MATLAB functions for it, although I may be looking in the wrong place. (I had to write my own function for it when I used it a few decazdes ago.)
This has only one variable.
My choice would be to use accumarray (since I have a fair amount of experience with it), however other options also exist.
One approach —
LD = load(websave('whoSpeakCoder','https://www.mathworks.com/matlabcentral/answers/uploaded_files/1173943/whoSpeakCoder.mat'));
Coder = LD.whoSpeakCoder;
[UCoder,~,ix] = unique(Coder);
Tally = accumarray(ix, 1, []);
Out = table(UCoder,Tally)
Out = 11×2 table
UCoder Tally ______ _____ 0 2 1 119 2 70 3 3 5 25 6 417 8 4 9 35 12 4 13 9 999 92
The ‘UCoder’ vector are simply the sorted unique values that appear in ‘Coder’.
.
  2 件のコメント
Emu
Emu 2022 年 10 月 30 日
thank you , i used groupcounts to do this, but I need the values across two datasets (2nd one attached). The way the function works is explained in the discussion by the author:
"Cohen's test always uses a square matrix of dimension k x k, where k is the number of classes in which the two judges can rank an instance. we only know that there are 100 instances, but how many classes? if, for example, they were 3 classes, then you would have a 3 x 3 matrix (which is a square matrix). In cell (1,1) will go the number of instances classified as 1 by both judges, in cell (1,2) will go the number of instances classified as 1 by the first judge and 2 by the second judge, and so on. The sum of the elements of the matrix will be equal to the number of instances (100 in this case) and on the diagonal there will be the numbers of instances classified identically by both judges."
Star Strider
Star Strider 2022 年 10 月 30 日
編集済み: Star Strider 2022 年 10 月 30 日
There are two NaN values in ‘Master’ that are going to cause problems. I defer to you to solve them.
Otherwise, it’s accumarray to the rescue again!
Try this —
LD1 = load(websave('whoSpeakCoder','https://www.mathworks.com/matlabcentral/answers/uploaded_files/1173943/whoSpeakCoder.mat'));
Coder = LD1.whoSpeakCoder;
LD2 = load(websave('whoSpeakMaster','https://www.mathworks.com/matlabcentral/answers/uploaded_files/1173963/whoSpeakMaster.mat'));
Master = LD2.whoSpeakMaster;
NrNaN = nnz(isnan(Master))
NrNaN = 2
[UCoder,~,ixc] = unique(Coder);
[UMaster,~,ixm] = unique(Master);
% UCoder
% UMaster
Tally = accumarray([ixc ixm], 1, [])
Tally = 11×10
0 0 2 0 0 0 0 0 0 0 3 22 54 29 5 6 0 0 0 0 0 16 31 14 6 3 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 23 1 0 0 0 0 0 0 65 215 86 16 27 2 4 1 1 0 2 2 0 0 0 0 0 0 0 0 0 5 26 2 2 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 2 0 7 0 0 0 0 0 0
[r,c] = size(Tally);
TallyM = zeros(r+1,c+1);
TallyM(2:end,1) = UCoder;
TallyM(1,2:end) = UMaster.';
TallyM(2:end,2:end) = Tally % 'Tally' Matrix With Row & Column Designations Added
TallyM = 12×11
0 0 1 2 5 6 8 9 12 NaN NaN 0 0 0 2 0 0 0 0 0 0 0 1 3 22 54 29 5 6 0 0 0 0 2 0 16 31 14 6 3 0 0 0 0 3 0 0 0 1 1 0 1 0 0 0 5 0 1 0 23 1 0 0 0 0 0 6 0 65 215 86 16 27 2 4 1 1 8 0 2 2 0 0 0 0 0 0 0 9 0 0 5 26 2 2 0 0 0 0 12 0 0 2 2 0 0 0 0 0 0
% VN = compose('M%2d',UMaster);
% RN = compose('C%2d',UCoder);
% Out = array2table(Tally, 'VariableNames',VN, 'RowNames',RN)
Tally16 = zeros(16); % Matrix With All 16 Categories
Tally16(UCoder(1:end-1)+1,UMaster(~isnan(UMaster))+1) = Tally(1:end-1,1:end-2)
Tally16 = 16×16
0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 3 22 54 0 0 29 5 0 6 0 0 0 0 0 0 0 0 16 31 0 0 14 6 0 3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 23 1 0 0 0 0 0 0 0 0 0 0 65 215 0 0 86 16 0 27 2 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 26 2 0 2 0 0 0 0 0 0 0
Tally16M = zeros(17);
Tally16M(1,2:end) = 1:16;
Tally16M(2:end,1) = 1:16
Tally16M = 17×17
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Tally16M(2:end, 2:end) = Tally16
Tally16M = 17×17
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 22 54 0 0 29 5 0 6 0 0 0 0 0 0 0 3 0 16 31 0 0 14 6 0 3 0 0 0 0 0 0 0 4 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 1 0 0 0 23 1 0 0 0 0 0 0 0 0 0 7 0 65 215 0 0 86 16 0 27 2 0 0 4 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0
NOTES —
I was going to create a table with the results here too, however the NaN values made that impossible, because they throw a ‘repeated variable name’ error..
There are 11 ‘Coder’ categories in ‘UCoder’ and 10 ‘Master’ categories in ‘UMaster’ so the ‘Master’ categories are across the top (colums) and the Coder categories are the rows. See ‘TallyM’ for those details. (The ‘TallyM’ (1,1) element has no meaning. It is just there to fill the gap.)
EDIT — (30 Oct at 15:52)
Added 16-category ‘Tally16’ and ‘Tally16M’ matrices.
.

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeMatrices and Arrays についてさらに検索

製品


リリース

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by