solve double differentiation with two limits

6 ビュー (過去 30 日間)
Milan
Milan 2022 年 10 月 29 日
コメント済み: Milan 2022 年 10 月 29 日
%% hello I am trying to solve the equation with double differentiation of M_z which is equal to w_x get the value of M_z(x) but could not solve it. Could you please help me to solve this equation. M_z(x= 0) = -150 and M_z(x= L) = 250 are given
clc;
close;
clear;
syms d_F ;
syms d_F_c;
syms dM_B;
%syms Theta_B;
syms x real;
syms u_mid;
syms u_c;
syms u_max;
syms a;
syms w_x;
syms M_z;
%syms n;
%Q = 2.5; %kip/ft
L = 30.; % ft
%a = 18; %assume maximum deflection at 15', 20'
E = 29000.*12^2; %ksi to kips/ft2
I = 1890./(12)^4; %ft^4
E_I = E.*I; %kip*ft^2;
%% deflection at mid of AB
%P = 1;
%R = 1;
%syms u_2;
%R = 1
w_x = @(x) -1*x/(L/3)*heaviside(x-L/3)*(1-heaviside(x-2*L/3));
w_x_1 = w_x(x);
eq1 = gradient(M_z(x),2) == -w_z(x);
soln1 = dsolve(eq1, M_z(0)==-150, M_z(L) == 250);
fplot(x, w_x(x), [0,L]);

採用された回答

VBBV
VBBV 2022 年 10 月 29 日
編集済み: VBBV 2022 年 10 月 29 日
clc;
close;
clear;
syms d_F ;
syms d_F_c;
syms dM_B;
%syms Theta_B;
syms x real;
syms u_mid;
syms u_c;
syms u_max;
syms a;
% syms w_x;
syms M_z(x);
%syms n;
%Q = 2.5; %kip/ft
L = 30.; % ft
%a = 18; %assume maximum deflection at 15', 20'
E = 29000.*12^2; %ksi to kips/ft2
I = 1890./(12)^4; %ft^4
E_I = E.*I; %kip*ft^2;
%% deflection at mid of AB
%P = 1;
%R = 1;
%syms u_2;
%R = 1
w_x = @(x) -1*x/(L/3)*heaviside(x-L/3)*(1-heaviside(x-2*L/3));
w_x_1 = w_x(x)
w_x_1 = 
eq1 = diff(M_z(x),2) == -w_x_1
eq1 = 
soln1 = dsolve(eq1, [M_z(0)==-150, M_z(L) == 250])
soln1 = 
fplot(x, w_x(x), [0,L]); axis([0 30 -5 2])
  3 件のコメント
VBBV
VBBV 2022 年 10 月 29 日
sol1 is for moment variable M_z(x) . please open a new question for your problem
Milan
Milan 2022 年 10 月 29 日
I did it, could you please have a look?

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeSymbolic Math Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by