How to reconstruct/resample signal into continuous signal

7 ビュー (過去 30 日間)
Andreas
Andreas 2022 年 10 月 27 日
編集済み: Umeshraja 2024 年 10 月 10 日
t_cont = 0:0.001:0.5;
t_a = 0:1/48:0.5;
x_cont = 5 * cos(12*2*pi*t_cont) - 2*sin(2*pi*3/4*t_cont); %f_ny = 24Hz
x_a = 5 * cos(12*2*pi*t_a) - 2*sin(2*pi*3/4*t_a); %has at least Nyquist sampling frequency
y_a = resample(x_a, size(t_cont, 2), size(t_a, 2));
assert(y_a == t_cont) %this fails
From the signal theory, we know that if a signal is sampled with "Nyquist frequency" or higher, it should be reconstructable to the original signal.

回答 (1 件)

Umeshraja
Umeshraja 2024 年 10 月 10 日
編集済み: Umeshraja 2024 年 10 月 10 日
The process of reconstruction is indeed more complex than a simple resampling operation. It is true that a signal sampled at or above the Nyquist frequency can theoretically be reconstructed,
The resample function in MATLAB is primarily used for changing the sampling rate of discrete signals, which doesn't necessarily produce an ideal reconstruction. For proper reconstruction, we need to use ideal interpolation, typically approximated by sinc interpolation.
Here's a modified approach that demonstrates reconstruction using both a simple loop and a vectorized method. The vectorized method is typically much faster, especially for larger signals,
t_cont = 0:0.001:0.5;
t_a = 0:1/48:0.5;
Fs = 48;
% Sampling frequency is indeed above
% the Nyquist rate for the highest frequency component (12 Hz),
% allowing for accurate reconstruction.
f1 = 12; % Hz
f2 = 3/4; % Hz
% Original continuous signal
x_cont = 5 * cos(2*pi*f1*t_cont) - 2*sin(2*pi*f2*t_cont);
% Sampled signal
x_a = 5 * cos(2*pi*f1*t_a) - 2*sin(2*pi*f2*t_a);
% Reconstruction using sinc interpolation (loop method)
y_reconstructed_loop = zeros(size(t_cont));
for i = 1:length(t_cont)
y_reconstructed_loop(i) = sum(x_a .* sinc(Fs * (t_cont(i) - t_a)));
end
% Reconstruction using sinc interpolation (vectorized method)
n = 0:length(t_a)-1; % Sample indices
nTs = n / Fs; % Sample times
y_reconstructed_vec = x_a * sinc(Fs * (ones(length(n),1)*t_cont - nTs'*ones(1,length(t_cont))));
% Plot results
figure;
plot(t_cont, x_cont, 'b-', 'LineWidth', 1.5);
hold on;
plot(t_a, x_a, 'ro', 'MarkerSize', 6);
plot(t_cont, y_reconstructed_loop, 'g--', 'LineWidth', 1.5);
plot(t_cont, y_reconstructed_vec, 'm:', 'LineWidth', 1.5);
legend('Original Continuous', 'Sampled Points', 'Reconstructed (Loop)', 'Reconstructed (Vectorized)');
xlabel('Time (s)');
ylabel('Amplitude');
% Check reconstruction errors
max_error_loop = max(abs(x_cont - y_reconstructed_loop));
max_error_vec = max(abs(x_cont - y_reconstructed_vec));
fprintf('Maximum reconstruction error (loop method): %.6f\n', max_error_loop);
Maximum reconstruction error (loop method): 0.423190
fprintf('Maximum reconstruction error (vectorized method): %.6f\n', max_error_vec);
Maximum reconstruction error (vectorized method): 0.423190
% Check if both methods produce the same result
max_diff = max(abs(y_reconstructed_loop - y_reconstructed_vec));
fprintf('Maximum difference between loop and vectorized methods: %.6e\n', max_diff);
Maximum difference between loop and vectorized methods: 1.554312e-14
Perfect reconstruction is a theoretical concept. In practice, we can get very close, but there will always be small errors due to numerical limitations.
For a deeper dive into sampling theory, I recommend referring to Chapter 4: "Sampling of Continuous-Time Signals" in the book Digital Signal Processing by Oppenheim, Alan V., and Ronald W. Schafer.
To know more about “sinc” function, Please refer to the following documentation https://www.mathworks.com/help/signal/ref/sinc.html

カテゴリ

Help Center および File ExchangeSignal Generation and Preprocessing についてさらに検索

製品


リリース

R2014b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by