What constrained regression function shuld I use?

1 回表示 (過去 30 日間)
Simon Wang
Simon Wang 2015 年 3 月 13 日
回答済み: Simon Wang 2015 年 3 月 15 日
I have a regression model log (r(i)) = a + b * log(A(i)) where A(i) is a vector and each element is known. Log is the nature log.
I need to find out a, b, and each element of r(i) such that the sum of r(i) equals to a constant k and the sum of error, i.e. sum(square[log (r(i)) – (a + b * log(A(i)))]) is minimized. Both a and b are scalars.
What regression model can I choose?

採用された回答

Simon Wang
Simon Wang 2015 年 3 月 13 日
編集済み: Simon Wang 2015 年 3 月 13 日
Also, if this really works, do I need to have specific toolboxes? Do I need to an implement specific solver?
Thanks!
Simon

その他の回答 (3 件)

Torsten
Torsten 2015 年 3 月 13 日
Choose a and b such that
exp(a)*(A(1)^b+A(2)^b+...+A(n)^b)=k
Then sum (exp(a)*A(i)^b) = k is satisfied.
Now define r(i) = exp(a) * A(i)^b, and you are done.
Best wishes
Torsten.

Simon Wang
Simon Wang 2015 年 3 月 13 日
編集済み: Simon Wang 2015 年 3 月 13 日
Thanks!
exp(a)*(A(1)^b+A(2)^b+...+A(n)^b)=k and sum (exp(a)*A(i)^b) = k are the same equation.
So there are two unknowns a and b and only one equation, I did not see the way to get the unique a and b.
Note:
1) a and b are scalars
2) Condition is not used: sum(square[log (r(i)) – (a + b * log(A(i)))]) is minimized
Thanks!
Simon
  1 件のコメント
Torsten
Torsten 2015 年 3 月 13 日
Choose b=1, a=log(k/(A(1)+A(2)+...+A(n))) and define r(i)=exp(a)*A(i).
Then sum(square[log (r(i)) – (a + b * log(A(i)))]) is minimized (because it equals 0) and sum r(i)=k.
Best wishes
Torsten.

サインインしてコメントする。


Simon Wang
Simon Wang 2015 年 3 月 15 日
THank you for the response. I think it should work and this leads me to change my question a little bit because it will make more sense in real world scenarios. I will post another question and close this one. Thank you very much for the help.

カテゴリ

Help Center および File ExchangeLinear Regression についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by