What constrained regression function shuld I use?
1 回表示 (過去 30 日間)
古いコメントを表示
I have a regression model log (r(i)) = a + b * log(A(i)) where A(i) is a vector and each element is known. Log is the nature log.
I need to find out a, b, and each element of r(i) such that the sum of r(i) equals to a constant k and the sum of error, i.e. sum(square[log (r(i)) – (a + b * log(A(i)))]) is minimized. Both a and b are scalars.
What regression model can I choose?
0 件のコメント
採用された回答
その他の回答 (3 件)
Torsten
2015 年 3 月 13 日
Choose a and b such that
exp(a)*(A(1)^b+A(2)^b+...+A(n)^b)=k
Then sum (exp(a)*A(i)^b) = k is satisfied.
Now define r(i) = exp(a) * A(i)^b, and you are done.
Best wishes
Torsten.
0 件のコメント
Simon Wang
2015 年 3 月 13 日
編集済み: Simon Wang
2015 年 3 月 13 日
1 件のコメント
Torsten
2015 年 3 月 13 日
Choose b=1, a=log(k/(A(1)+A(2)+...+A(n))) and define r(i)=exp(a)*A(i).
Then sum(square[log (r(i)) – (a + b * log(A(i)))]) is minimized (because it equals 0) and sum r(i)=k.
Best wishes
Torsten.
参考
カテゴリ
Help Center および File Exchange で Linear Regression についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!