Threshold calculation without "if else"

7 ビュー (過去 30 日間)
Kyle Wang
Kyle Wang 2015 年 3 月 10 日
コメント済み: Guillaume 2015 年 3 月 11 日
Given following logic
T=1, if x < m1
T=2, if x >= m1 && x < m2
T=3, if x >= m2 && x < m3
T=4, if x >= m3
x is a parameter; m1, m2, m3 are thresholds to determine the conversion from x to T. Is there a way to calculate T without using "if"? Say, "rem" or "mod" or something without logic operation?
  4 件のコメント
Kyle Wang
Kyle Wang 2015 年 3 月 10 日
ha, solved:
m = [m1, m2, m3];
div = floor(x./m);
reg_score = div./(div+eps);
reg = [1,reg_score(1),reg_score(2),reg_score(3)];
T = sum(reg)
Guillaume
Guillaume 2015 年 3 月 11 日
編集済み: Guillaume 2015 年 3 月 11 日
Never mind that your solution only works with scalars whereas ours work on matrices of any shape, you're using floating point division, one of the slowest operation for a processor instead of comparison, one of the fastest operation.
Kind of pointless really. Particularly, that div./(div+eps) which is just a slow and roundabout way of saying div >= 1.

サインインしてコメントする。

採用された回答

Guillaume
Guillaume 2015 年 3 月 10 日
T = 1 + (x >= m1) + (x >= m2) + (x >= m3)
would work. May not be more efficient that if though.
  5 件のコメント
Jan
Jan 2015 年 3 月 11 日
@Guillaume: histc is the most efficient solution.
Guillaume
Guillaume 2015 年 3 月 11 日
Timing comparison:
  • With scalar:
x = rand;
m1 = 0.25; m2 = 0.5; m3 = 0.75;
%method 1: my solution
timeit(@() 1 + (x >= m1) + (x >= m2) + (x >= m3), 1)
%method 2: Star's solution
timeit(@() 1*(x < m1) + 2*((x >= m1) & (x < m2)) + 3*((x >= m2) & (x < m3)) + 4*(x >= m3), 1)
%method 3: Kyle's solution
timeit(@() sum([1 floor(x./[m1 m2 m3]) ./ (floor(x./[m1 m2 m3]) + eps)]), 1)
%method 4: histc
timeit(@() histc(x, [-Inf m1 m2 m3 Inf]), 2)
%method 5: Image's solution
timeit(@() imquantize(x, [m1 m2 m3]), 1)
Timings:
  • method 1 (mine): 6.6384955612319e-06
  • method 2 (star): 8.68228864632548e-06
  • method 3 (kyle): 9.01446251150368e-06
  • method 4 (histc): 1.3435760719302e-05
  • method 5 (image): 2.7342570776026e-05
sum of logical is fastest, histc and imquantize are ten times slower. Kyle's method is surprisingly not too bad but still slower.
  • with matrices
x = rand(2000);
m1 = 0.25; m2 = 0.5; m3 = 0.75;
%method 1: my solution
timeit(@() 1 + (x >= m1) + (x >= m2) + (x >= m3), 1)
%method 2: Star's solution
timeit(@() 1*(x < m1) + 2*((x >= m1) & (x < m2)) + 3*((x >= m2) & (x < m3)) + 4*(x >= m3), 1)
%method 3: Kyle's solution
timeit(@() sum([1 floor(x./[m1 m2 m3]) ./ (floor(x./[m1 m2 m3]) + eps)]), 1)
%method 4: histc
timeit(@() histc(x, [-Inf m1 m2 m3 Inf]), 2)
%method 5: Image's solution
timeit(@() imquantize(x, [m1 m2 m3]), 1)
  • method 1 (mine): 0.0722110642432628
  • method 2 (star): 0.173027548846752
  • method 3 (kyle): Does not work!
  • method 4 (histc): 0.0570872784882915
  • method 5 (image): 0.05592453728061645
histc and imquantize are slightly faster (probably because they only loop once over the matrix). Kyle's method does not work on matrices / vectors

サインインしてコメントする。

その他の回答 (1 件)

Image Analyst
Image Analyst 2015 年 3 月 11 日
There sure is, if you have the Image Processing Toolbox . The function is called imquantize() . Here's a full demo:
% T=1, if x < m1
% T=2, if x >= m1 && x < m2
% T=3, if x >= m2 && x < m3
% T=4, if x >= m3
x = imread('cameraman.tif');
subplot(1,2,1);
imshow(x);
levels = [50, 150, 230]; % The "m" threshold levels.
classifiedImage = uint8(imquantize(x, levels));
subplot(1, 2, 2);
imshow(classifiedImage, []);
% Enlarge figure to full screen.
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1]);
There is logic, but it's hidden - internal to the imquantize() function so you don't see it and you don't have to explicitly do logical operations yourself, you just call the function.

カテゴリ

Help Center および File ExchangePerformance and Memory についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by