Removing outliers from a matrix

4 ビュー (過去 30 日間)
Seyed Navid Shoaiby
Seyed Navid Shoaiby 2022 年 10 月 11 日
編集済み: Bjorn Gustavsson 2022 年 10 月 11 日
I removed outliers from my each column of my feature matrix, but now I have feature vectors with differing lengths. I cannot make them the same length because I will lose data from a certain range. If I shuffle, then the correlation between my features and my outcome becomes messy. How can I do that? My matrix of features and outcomes is a 55000*14 matrix. The last column is the outputs.
  1 件のコメント
Davide Masiello
Davide Masiello 2022 年 10 月 11 日
Maybe, instead of removing the outliers, you could replace them with an interpolated value.

サインインしてコメントする。

回答 (1 件)

Bjorn Gustavsson
Bjorn Gustavsson 2022 年 10 月 11 日
編集済み: Bjorn Gustavsson 2022 年 10 月 11 日
QD-answer: The best you can do for single pairs of columns is to only use the rows where neither are outliers. With the cov-function you can get this handled with the options 'omitrows' or 'partialrows' if you replace each outlier with a nan. If you want to use the corrcoef-function it has a slightly different interface. It takes a parameter-value pair to set the options for 'rows', see the help and documentation for description.
HTH

カテゴリ

Help Center および File ExchangeDescriptive Statistics についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by