How can i plot dy/dx function?

21 ビュー (過去 30 日間)
nur farizan munajat
nur farizan munajat 2022 年 10 月 6 日
編集済み: Torsten 2022 年 10 月 8 日
i have below code. i can get the solution for the derivative equation and able to plot y vs x. But how can i plot dydx vs x?
clear
xspan = (30:0.1:900);
y0 = 0;
[x,y] = ode23(@(x,y) odefun(x,y), xspan, y0);
plot(x,y)
function dydx = odefun(x,y)
R=8.314;
Q1=0.29*7.54E19*exp(-209201/(R*(x+273)))*(1-y)^3;
Q2=0.34*5.07E16*exp(-195508/(R*(x+273)))*(1-y)^2;
dydx =(Q1+Q2)/5;
end

採用された回答

Davide Masiello
Davide Masiello 2022 年 10 月 6 日
編集済み: Davide Masiello 2022 年 10 月 6 日
You can use deval in combination with solution structure.
xspan = (30:0.1:900);
y0 = 0;
opts = odeset('AbsTol',1e-8,'RelTol',1e-6);
sol = ode15s(@(x,y) odefun(x,y), xspan, y0, opts);
[~,yp] = deval(sol,sol.x);
plot(sol.x,sol.y)
ylabel('y')
yyaxis right
plot(sol.x,yp)
ylabel('dy/dx')
function dydx = odefun(x,y)
R=8.314;
Q1=0.29*7.54E19*exp(-209201/(R*(x+273)))*(1-y)^3;
Q2=0.34*5.07E16*exp(-195508/(R*(x+273)))*(1-y)^2;
dydx =(Q1+Q2)/5;
end
PS. I changed solver and adjusted tolerances for a better result, you might want to consider doing the same.

その他の回答 (1 件)

Torsten
Torsten 2022 年 10 月 6 日
xspan = (30:0.1:900);
y0 = 0;
options = odeset('RelTol',1e-12,'AbsTol',1e-12);
[x,y] = ode15s(@(x,y) odefun(x,y), xspan, y0, options);
dy = zeros(size(y));
for i = 1:numel(x)
dy(i) = odefun(x(i),y(i));
end
%hold on
%plot(x,y)
plot(x,dy)
%hold off
function dydx = odefun(x,y)
R=8.314;
Q1=0.29*7.54E19*exp(-209201/(R*(x+273)))*(1-y)^3;
Q2=0.34*5.07E16*exp(-195508/(R*(x+273)))*(1-y)^2;
dydx =(Q1+Q2)/5;
end
  2 件のコメント
nur farizan munajat
nur farizan munajat 2022 年 10 月 8 日
Thank you for your answer. Now i expand my function dydx. This funtion is actually based on the experimental data. it suppose to get more than one peak. but i still got only one peak
function dydx = odefun(x,y)
R=8.314;
Q1=0.29*7.54E19*exp(-209201/(R*(x+273)))*(1-y)^3;
Q2=0.34*5.07E16*exp(-195508/(R*(x+273)))*(1-y)^2;
Q3=0.12*1.48E07*exp(-136978/(R*(x+273)))*2*(1-y)*sqrt(-log(1-y));
Q4=0.09*6.88E07*exp(-142875/(R*(x+273)))*3*(1-y)*(-log(1-y))^(2/3);
dydT =(Q1+Q2+Q3+Q4)/5;
end
Torsten
Torsten 2022 年 10 月 8 日
編集済み: Torsten 2022 年 10 月 8 日
The solution curve for y shows that there should only be one peak ...
Obviously, one reaction dominates the other three massively:
xspan = (30:0.1:900);
y0 = 0;
options = odeset('RelTol',1e-12,'AbsTol',1e-12);
info = 1;
[x1,y1] = ode15s(@(x,y) odefun(x,y,info), xspan, y0, options);
info = 2;
[x2,y2] = ode15s(@(x,y) odefun(x,y,info), xspan, y0, options);
dy1 = zeros(size(y1));
for i = 1:numel(x1)
dy1(i) = odefun(x1(i),y1(i),1);
end
dy2 = zeros(size(y2));
for i = 1:numel(x2)
dy2(i) = odefun(x2(i),y2(i),1);
end
figure(1)
hold on
plot(x1,y1)
plot(x2,y2)
Warning: Imaginary parts of complex X and/or Y arguments ignored.
hold off
figure(2)
hold on
plot(x1,dy1)
plot(x2,dy2)
Warning: Imaginary parts of complex X and/or Y arguments ignored.
hold off
function dydT = odefun(x,y, info)
R=8.314;
Q1=0.29*7.54E19*exp(-209201/(R*(x+273)))*(1-y)^3;
Q2=0.34*5.07E16*exp(-195508/(R*(x+273)))*(1-y)^2;
Q3=0.12*1.48E07*exp(-136978/(R*(x+273)))*2*(1-y)*sqrt(-log(1-y));
Q4=0.09*6.88E07*exp(-142875/(R*(x+273)))*3*(1-y)*(-log(1-y))^(2/3);
if info == 1
dydT = Q1/5;
else
dydT = (Q1+Q2+Q3+Q4)/5;
end
end

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeMATLAB についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by