Error: Edge vector must be monotonically non-decreasin with isosurface

1 回表示 (過去 30 日間)
Jamie Al
Jamie Al 2022 年 10 月 4 日
コメント済み: Jamie Al 2022 年 10 月 4 日
I have the following code where I am taking 3D FFT for 3D matrix and comparing its derivatives to the "exact" values, but I am getting the error:
Edge vector must be monotonically non-decreasing.
Error in hist (line 152)
nn = histc(y,edgesc,1);
Error in isovalue (line 16)
[n, ctrs] = hist(data(1:r:end),100);
Error in isosurface (line 87)
value = isovalue(data);
Error in Fourier3D_nonlinear (line 108)
isosurface(X,Y,Z,dux);
The full code:
Nx = 32;
Ny = 32;
Nz = 32;
Lx = 2*pi;
Ly = 2*pi;
Lz = 2*pi;
x = (0:Nx-1)/Nx*2*pi; % x coordinate in Fourier, equally spaced grid
y = (0:Ny-1)/Ny*2*pi;
z = (0:Nz-1)/Nz*2*pi;
dx = Lx/Nx;
dy = Ly/Ny;
dz = Lz/Nz;
kx = makeK(Lx,Nx)';
ky = makeK(Ly,Ny)';
kz = makeK(Lz,Nz)';
%$$$$$$$$$$$$$$$$$$$$
ksqu = (sin( kx * dx/2)/(dx/2)).^2 + (sin( ky * dy/2)/(dy/2)).^2 + (sin( kz * dz/2)/(dz/2)).^2 ;
kx = sin(kx * dx) / dx;
ky = sin(ky * dy) / dy;
kz = sin(kz * dz) / dz;
%-----------
%make mesh
[X,Y,Z] = meshgrid(x,y,z);
A = 2*pi / Lx;
B = 2*pi / Ly;
C = 2*pi / Lz;
%%
u = sin(C*Z).^2 .* sin(A*X) .* cos(B*Y);
uh = fft(fft(fft(u, [], 1), [], 2), [], 3);
duxk = derivk(uh,kx);
dux = ifft(ifft(ifft(duxk, [], 1), [], 2), [], 3);
duyk = derivk(uh,reshape(ky, [Ny,1,1]));
duy = ifft(ifft(ifft(duyk, [], 1), [], 2), [], 3);
duzk = derivk(uh,reshape(kz, [1,1,Nz]));
duz = ifft(ifft(ifft(duzk, [], 1), [], 2), [], 3);
ExactDux = sin(C*Z).^2 .* A.* cos(A*X) .* cos(B*Y) ;
DEx = ExactDux - dux;
ExactDuy = -B .* sin(A*X) .*sin(B*Y) .*sin(C*Z).^2;
DEy = ExactDuy - duy;
ExactDuz = 2*C .* cos(B*Y) .* cos(C*Z) .*sin(A*X) .* sin(C*Z);
DEz = ExactDuz - duz;
%%
figure
isosurface(X,Y,Z,dux); %ERROR here
title('\partial u/\partial x');
figure
isosurface(X,Y,Z,ExactDux);
title('Exact \partial u/\partial x');

採用された回答

Chunru
Chunru 2022 年 10 月 4 日
Nx = 32;
Ny = 32;
Nz = 32;
Lx = 2*pi;
Ly = 2*pi;
Lz = 2*pi;
x = (0:Nx-1)/Nx*2*pi; % x coordinate in Fourier, equally spaced grid
y = (0:Ny-1)/Ny*2*pi;
z = (0:Nz-1)/Nz*2*pi;
dx = Lx/Nx;
dy = Ly/Ny;
dz = Lz/Nz;
kx = makeK(Lx,Nx)';
ky = makeK(Ly,Ny)';
kz = makeK(Lz,Nz)';
%$$$$$$$$$$$$$$$$$$$$
ksqu = (sin( kx * dx/2)/(dx/2)).^2 + (sin( ky * dy/2)/(dy/2)).^2 + (sin( kz * dz/2)/(dz/2)).^2 ;
kx = sin(kx * dx) / dx;
ky = sin(ky * dy) / dy;
kz = sin(kz * dz) / dz;
%-----------
%make mesh
[X,Y,Z] = meshgrid(x,y,z);
A = 2*pi / Lx;
B = 2*pi / Ly;
C = 2*pi / Lz;
%%
u = sin(C*Z).^2 .* sin(A*X) .* cos(B*Y);
uh = fft(fft(fft(u, [], 1), [], 2), [], 3);
duxk = derivk(uh,kx);
dux = ifft(ifft(ifft(duxk, [], 1), [], 2), [], 3);
duyk = derivk(uh,reshape(ky, [Ny,1,1]));
duy = ifft(ifft(ifft(duyk, [], 1), [], 2), [], 3);
duzk = derivk(uh,reshape(kz, [1,1,Nz]));
duz = ifft(ifft(ifft(duzk, [], 1), [], 2), [], 3);
ExactDux = sin(C*Z).^2 .* A.* cos(A*X) .* cos(B*Y) ;
DEx = ExactDux - dux;
ExactDuy = -B .* sin(A*X) .*sin(B*Y) .*sin(C*Z).^2;
DEy = ExactDuy - duy;
ExactDuz = 2*C .* cos(B*Y) .* cos(C*Z) .*sin(A*X) .* sin(C*Z);
DEz = ExactDuz - duz;
%%
figure
%============================================================
% isosurface receive real data only. use real or abs here
isosurface(X,Y,Z,real(dux)); %ERROR here
title('\partial u/\partial x');
figure
isosurface(X,Y,Z,ExactDux);
title('Exact \partial u/\partial x');
function data_deriv = derivk(fk,k)
% Takes derivative of a 2D matrix using Fourier transforms
data_deriv = 1i * k .* fk;
end
function k = makeK(L, n)
% Makes a k vector for Matlab fft using the length and number of points
% Tested and works
k = (2 * pi / L) * [0:n/2-1 , -n/2:-1]';
end
  4 件のコメント
Chunru
Chunru 2022 年 10 月 4 日
dux = real(ifft(ifft(ifft(duxk, [], 1), [], 2), [], 3));
The above works for me. Your ifft has no problem.
For your second question, I am not sure what is the problem. But my guess is something to do with the exact solution formula. Double check it.
Jamie Al
Jamie Al 2022 年 10 月 4 日
Thanks!

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File Exchange2-D and 3-D Plots についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by