Solve 2nd order ODE using Euler Method
63 ビュー (過去 30 日間)
古いコメントを表示
VERY new to Matlab...
Trying to implement code to use Euler method for solving second order ODE.
Equation:
x'' + 2*z*w*x' + w*x = 2*sin(2*pi*2*t)
z and w are constants. "t" is time.
Any help would be great.
Thanks!
5 件のコメント
James Tursa
2022 年 10 月 4 日
@Matt - FYI, when you get errors, it is best to post the entire error message along with your code. Regardless, see my answer below ...
採用された回答
James Tursa
2022 年 10 月 4 日
編集済み: James Tursa
2022 年 10 月 4 日
You start your loop with i=1, but that means your x_d(i-1) will be x_d(0), an invalid index, hence the error. You need to set initial values for x_d(1) and x(1), and then have your starting loop index be 2. E.g.,
x(1) = initial x value
x_d(1) = initial xdot value
for i=2:n1 % start loop index at 2
x_dd(i-1) = use (i-1) indexes on everything on rhs
x_d(i) = use (i-1) indexes on everything on rhs
x(i) = use (i-1) indexes on everything on rhs
その他の回答 (1 件)
Davide Masiello
2022 年 9 月 27 日
編集済み: Davide Masiello
2022 年 9 月 27 日
Hi Matt - a second order ODE can be decomposed into two first order ODEs.
The secret is to set 2 variables y as
The you have
An example code is
clear,clc
tspan = [0,1]; % integrates between times 0 and 1
x0 = [1 0]; % initial conditions for x and dx/dt
[t,X] = ode15s(@odeFun,tspan,x0); % passes functions to ODE solver
x = X(:,1);
dxdt = X(:,2);
plot(t,x)
function dydt = odeFun(t,y)
z = 1;
w = 1;
dydt(1,1) = y(2);
dydt(2,1) = 2*z*w*y(2)-w*y(1)+2*sin(2*pi*2*t);
end
1 件のコメント
Davide Masiello
2022 年 9 月 27 日
For more info, I suggest reading the documentation at the following link.
参考
カテゴリ
Help Center および File Exchange で Ordinary Differential Equations についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!