Minimalization problem LinearConstraint and conjugate gradient optimizer
2 ビュー (過去 30 日間)
古いコメントを表示
Problem, input data and equations are described in details in attachment. This matrix is called Ms in the below mentioned equation.
The equation is the function F(ω). Omega (ω) are the seven wages which I’m looking for by minimize values of the second equation. The condition is that ω1 + ω2 + ω3 + ω4 + ω5 + ω6 + ω7 = 1.
When using Scipy.stats, the LinearConstraint and Conjugate gradient optimizer were used.
The obtained results were: 0.20141944, 0.1590185 , 0.13852083, 0.08702209, 0.13283426, 0.14539815, 0.14247747. Sum of these wages equals 1.
I very appreciate if someone help me out to write code or use Optimization tool to obtain these results.The input matrix Ms is in attached file.
Best Regards,
Tomi
2 件のコメント
Torsten
2022 年 9 月 25 日
What are you trying to minimize ? What are your constraints ? I don't get it from your decription.
採用された回答
Torsten
2022 年 9 月 26 日
編集済み: Torsten
2022 年 9 月 26 日
According to the Python code, F is maximized, not minimized. Change in the below code if appropriate.
M = [0.170543 0.327434 0.174194 0 0.421053 0.307167 0.297659
0.155039 0.504425 0.664516 0.530612 0.102493 0.05802 0.053512
0.255814 0.318584 0.212903 0 0.445983 0.337884 0.311037
0.224806 0.548673 0.664516 0.591837 0.141274 0.068259 0.053512
0.383721 0.389381 0.303226 0 0.573407 0.433447 0.41806
0.360465 0.716814 0.883871 0.755102 0.227147 0.078498 0.073579
0.449612 0.566372 0.36129 0 0.775623 0.573379 0.498328
0.484496 0.920354 0.948387 1 0.265928 0.109215 0.107023
0.375969 0.539823 0.303226 0 0.648199 0.481229 0.438127
0.399225 0.769912 0.716129 0.857143 0.224377 0.102389 0.100334
0.356589 0.39823 0.264516 0 0.717452 0.498294 0.444816
0.391473 0.761062 0.703226 0.795918 0.218837 0.098976 0.09699
0.290698 0.327434 0.251613 0 0.770083 0.518771 0.464883
0.395349 0.761062 0.767742 0.795918 0.207756 0.085324 0.09699
0.352713 0.380531 0.277419 0 0.797784 0.501706 0.501672
0.426357 0.778761 0.870968 0.877551 0.265928 0.112628 0.100334
0.403101 0.336283 0.309677 0 0.761773 0.467577 0.491639
0.468992 0.743363 0.877419 0.897959 0.224377 0.119454 0.090301
0.387597 0.345133 0.341935 0 0.775623 0.518771 0.551839
0.496124 0.787611 0.877419 0.857143 0.263158 0.122867 0.113712
0.333333 0.380531 0.341935 0 0.759003 0.566553 0.585284
0.624031 0.80531 0.780645 0.795918 0.293629 0.12628 0.130435
0.534884 0.40708 0.419355 0 0.894737 0.641638 0.628763
0.786822 0.938053 1 0.632653 0.379501 0.197952 0.120401
0.453488 0.380531 0.419355 0 0.842105 0.607509 0.628763
0.554264 0.876106 0.741935 0.877551 0.254848 0.334471 0.130435
0.639535 0.646018 0.593548 0 1 0.8157 0.73913
0.689922 1 0.735484 0.693878 0.351801 0.337884 0.137124
1 0.867257 0.354839 0 0.617729 1 1
0.546512 0.876106 0.703226 0.877551 0.254848 0.334471 0.130435];
w0 = [1/7;1/7;1/7;1/7;1/7;1/7;1/7];
Aeq = ones(1,7);
beq = 1.0;
lb = zeros(7,1);
ub = ones(7,1);
options = optimset('TolFun',1e-10,'TolX',1e-10);
format long
[w,fval] = fmincon(@(w)fun(w,M),w0,[],[],Aeq,beq,lb,ub,[],options)
function value = fun(w,M)
cM = zeros(7,1);
Mw = M*w;
Mwm = mean(Mw);
Mim = mean(M,1);
for i = 1:7
Mi = M(:,i);
cM(i) = sum((Mi-Mim(i)).*(Mw-Mwm))/sqrt(sum((Mi-Mim(i)).^2)*sum((Mw-Mwm).^2));
end
value = -sum(cM);
end
その他の回答 (2 件)
Tomi
2022 年 9 月 28 日
5 件のコメント
Torsten
2022 年 9 月 29 日
編集済み: Torsten
2022 年 9 月 29 日
M = [0.170543 0.327434 0.174194 0 0.421053 0.307167 0.297659
0.155039 0.504425 0.664516 0.530612 0.102493 0.05802 0.053512
0.255814 0.318584 0.212903 0 0.445983 0.337884 0.311037
0.224806 0.548673 0.664516 0.591837 0.141274 0.068259 0.053512
0.383721 0.389381 0.303226 0 0.573407 0.433447 0.41806
0.360465 0.716814 0.883871 0.755102 0.227147 0.078498 0.073579
0.449612 0.566372 0.36129 0 0.775623 0.573379 0.498328
0.484496 0.920354 0.948387 1 0.265928 0.109215 0.107023
0.375969 0.539823 0.303226 0 0.648199 0.481229 0.438127
0.399225 0.769912 0.716129 0.857143 0.224377 0.102389 0.100334
0.356589 0.39823 0.264516 0 0.717452 0.498294 0.444816
0.391473 0.761062 0.703226 0.795918 0.218837 0.098976 0.09699
0.290698 0.327434 0.251613 0 0.770083 0.518771 0.464883
0.395349 0.761062 0.767742 0.795918 0.207756 0.085324 0.09699
0.352713 0.380531 0.277419 0 0.797784 0.501706 0.501672
0.426357 0.778761 0.870968 0.877551 0.265928 0.112628 0.100334
0.403101 0.336283 0.309677 0 0.761773 0.467577 0.491639
0.468992 0.743363 0.877419 0.897959 0.224377 0.119454 0.090301
0.387597 0.345133 0.341935 0 0.775623 0.518771 0.551839
0.496124 0.787611 0.877419 0.857143 0.263158 0.122867 0.113712
0.333333 0.380531 0.341935 0 0.759003 0.566553 0.585284
0.624031 0.80531 0.780645 0.795918 0.293629 0.12628 0.130435
0.534884 0.40708 0.419355 0 0.894737 0.641638 0.628763
0.786822 0.938053 1 0.632653 0.379501 0.197952 0.120401
0.453488 0.380531 0.419355 0 0.842105 0.607509 0.628763
0.554264 0.876106 0.741935 0.877551 0.254848 0.334471 0.130435
0.639535 0.646018 0.593548 0 1 0.8157 0.73913
0.689922 1 0.735484 0.693878 0.351801 0.337884 0.137124
1 0.867257 0.354839 0 0.617729 1 1
0.546512 0.876106 0.703226 0.877551 0.254848 0.334471 0.130435];
w0 = [1/7;1/7;1/7;1/7;1/7;1/7;1/7];
Aeq = ones(1,7);
beq = 1.0;
lb = zeros(7,1);
ub = ones(7,1);
options = optimset('TolFun',1e-10,'TolX',1e-10);
Mim = mean(M,1);
fun = @(w) -sum(arrayfun(@(i)sum((M(:,i)-Mim(i)).*(M*w-mean(M*w)))/sqrt(sum((M(:,i)-Mim(i)).^2)*sum((M*w-mean(M*w)).^2)),1:7));
format long
[w,fval] = fmincon(fun,w0,[],[],Aeq,beq,lb,ub,[],options)
参考
カテゴリ
Help Center および File Exchange で Quadratic Programming and Cone Programming についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!