Help Making a Piecewise Function Periodic
41 ビュー (過去 30 日間)
古いコメントを表示
So I am trying to plot a piecewise function where z(t) = {t , 0 <= t < 1
e^(-5(t-1)) , 1 <= t < 2.5
0 , else
When I run it, it just gives the one period even though mod(t,2.5) should be keeping everything OK. How do I fix this? (I want to make it periodic)
(Oh yeah, my interval is -2 <= t <= 12)
t1 = -2 : 0.01 : 12;
syms t z(t); % defining a symbolic variable
z(t) = (piecewise((mod(t,2.5)>=0)&(mod(t,2.5)<1),t, (mod(t,2.5)>=1)&(mod(t,2.5)<2.5), exp(-5.*(t-1)), 0));
z1 = z(t1);
figure
hold on
plot(t1, z1);
0 件のコメント
採用された回答
Paul
2022 年 9 月 24 日
HI Connor,
Something like this?
syms t real
z(t) = piecewise(0 <= t <= 1,t, 1 < t <= 2.5, exp(-5*(t-1)),0);
fplot(z(t),[-2 12])
z1(t) = z(mod(t,2.5));
fplot(z1(t),[-2 12])
tval = -2:.01:12;
plot(tval,z1(tval))
4 件のコメント
Anoop Kiran
2022 年 10 月 10 日
Hi Paul,
I tried your code, unfortunately it doesn't result in the periodic behavior at every 2.5 interval like the second and third plots that you have.
Paul
2022 年 10 月 10 日
You'll need to show the exact code you ran and the results obtained before going any further.
その他の回答 (1 件)
Alexander
2025 年 6 月 16 日
In the most recent R2024b Update 5 (24.2.0.2871072) version modular division by real number doesn't work as expected to plot periodic functions extentions. I tried the following approach and it worked. In short, do low level in special function.
clear;clf;clc;
% Define the period and the range for x
L = pi; % Half-Period of the periodic function
t = -3*L:L/100:3*L;
% Define the given function
fl1 = @(t) (pi/2.*(t >= -pi & t <-pi/2));
fl2 = @(t) (-t.*(t >= -pi/2 & t < 0));
fr1 = @(t) (pi/2.*(t >= pi/2 & t <pi));
fr2 = @(t) (t.*(t >= 0 & t < pi/2));
f = @(t) (fl1(t)+fl2(t)+fr1(t)+fr2(t));
g = @(t) (-L + ((-L+t)/(2*L)-floor((-L+t)/(2*L)))*(2*L));
t_intervals = g(t);
%figure;
plot(t,f(t_intervals))
hold on;
title('f(t)', 'Interpreter','latex');
xticks([-2*pi -pi 0 pi 2*pi])
xticklabels({'-2\pi','-\pi','0','\pi','2\pi'})
ylim([-.1 pi/2*1.1])
yticks([0 pi/4 pi/2])
yticklabels({'0','\frac{\pi}{4}','\frac{\pi}{2}'})
xlabel('t'); %ylabel('f(t)');
set(gca,'TickLabelInterpreter', 'latex');
set(gca,'fontsize',12)
grid on;
hold off
Which should produce

6 件のコメント
Walter Roberson
2025 年 6 月 16 日
L = pi; % Half-Period of the periodic function
tval = -3*L:L/100:3*L;
plot(tval,mod(tval,2*L));
Notice that this mod result is nowhere negative.
plot(tval,rem(tval,2*L));
rem() does produce negatives, but only for the negative input range.
It is an error to think that mod() will produce negative outputs when the divisor is positive.
Compare to
plot(tval,mod(tval+L,2*L)-L);
Alexander
2025 年 6 月 16 日
Confirmed. I also cleaned my code, which produces correct plot for even function by modulo division. No need to declare a function argument as real number.
clear;clf;clc;
% Define the period and the range for x
L = pi; % Half-Period of the periodic function
t = -3*L:L/100:3*L;
% Define the given function
fl1 = @(t) (pi/2.*(t >= -pi & t <-pi/2));
fl2 = @(t) (-t.*(t >= -pi/2 & t < 0));
fr1 = @(t) (pi/2.*(t >= pi/2 & t <pi));
fr2 = @(t) (t.*(t >= 0 & t < pi/2));
f = @(t) (fl1(t)+fl2(t)+fr1(t)+fr2(t));
plot(t,f(mod(t+L,2*L)-L));
hold on;
title('f(t)', 'Interpreter','latex');
xticks([-2*pi -pi 0 pi 2*pi])
xticklabels({'-2\pi','-\pi','0','\pi','2\pi'})
ylim([-.1 pi/2*1.1])
yticks([0 pi/4 pi/2])
yticklabels({'0','\frac{\pi}{4}','\frac{\pi}{2}'})
xlabel('t'); %ylabel('f(t)');
set(gca,'TickLabelInterpreter', 'latex');
set(gca,'fontsize',12)
grid on;
hold off;
The resulting plot is symmetric about y-axis:

参考
カテゴリ
Help Center および File Exchange で Assumptions についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!






